1. Let L^p denote the Lebesgue space for the normalized measure $(1/2\pi)d\theta$ defined on the unit circle $T = \{e^{i\theta} : 0 \leq \theta \leq 2\pi\}$, let H^p denote the corresponding Hardy space of functions in L^p which have zero negative Fourier coefficients and let P be the projection of L^2 onto H^2. For ϕ in L^∞ we define the Toeplitz operator T_ϕ on H^2 by $T_\phi f = P(\phi f)$ for f in H^2. It is clear that T_ϕ is bounded and this class of operators has been much studied.

Much of the interest in Toeplitz operators has been directed to the determination of their spectra. For ϕ in L^∞ it was shown by Wintner in [12] that the spectrum $\sigma(T_\phi)$ of T_ϕ is the closure of the range of the analytic extension of ϕ to the unit disk D. For ϕ in the space C of continuous functions on T it was shown by Devinatz [4] (see [10] for earlier results) that $\sigma(T_\phi)$ consists of the range of ϕ on T along with those λ for which the index of λ with respect to the curve determined by ϕ is different from zero. In this note we describe $\sigma(T_\phi)$ for ϕ in the linear span of L^∞ and C. (This manifold is actually a closed subalgebra of L^∞.) We show that such a T_ϕ is invertible if its harmonic extension ϕ to D is bounded away from zero on a neighborhood of T and the index of the curve $\phi(Re^{i\theta})$ is zero for R sufficiently large. Our technique can be viewed as an extension of that used in [6] to determine $\sigma(T_\phi)$ for ϕ in C.

In §3 we indicate how to extend our results to determine the index of a certain class of vector-valued Toeplitz operators (or systems of Toeplitz operators). In this we generalize certain of the results of Gohberg and Krein in [7]. We conclude by describing how our results can be applied to the study of Wiener-Hopf operators both in the scalar case and the vector-valued case using the isomorphism exhibited in [5].

We only outline our proofs and complete details will appear elsewhere.

2. We begin by recalling some facts about Fredholm operators. Let \mathcal{L} denote the algebra of bounded operators on H^2, \mathcal{K} the uniformly closed two-sided ideal of compact operators in \mathcal{L}, and π the homomorphism of \mathcal{L} onto \mathcal{L}/\mathcal{K}. An operator A in \mathcal{L} is said to be a Fredholm operator if A has a closed range and both a finite dimen-
sional kernel and cokernel. It is known [1] that this is equivalent to
\(\pi(A) \) being an invertible element of \(\mathcal{E}/\mathcal{K} \). If \(A \) is a Fredholm operator,
then the analytical index \(i_a(A) \) is defined \(i_a(A) = \dim [\ker A] - \dim [\ker A^*] \), where \(\ker(\) \) denotes the kernel.

One reason the notion of index is important for determining the
invertibility of Toeplitz operators is the following fact proved by
Coburn [2].

Lemma 1. For \(\phi \) in \(L^\infty \) either \(\ker T_\phi = (0) \) or \(\ker T_\phi^* = (0) \).

Thus, if \(T_\phi \) is known to be a Fredholm operator, then \(T_\phi \) is invertible if and only if \(i_a(T_\phi) = 0 \). We shall show for \(\phi \) in \(H^\infty + C \) that \(T_\phi \) is a Fredholm operator if and only if \(\phi \) is an invertible element of the algebra \(H^\infty + C \). That \(H^\infty + C \) is an algebra is a result due to Sarason [9] which we state as a lemma.

Lemma 2. The linear span of \(H^\infty \) and \(C \) is a closed subalgebra of \(L^\infty \). Moreover, the maximal ideal space of \(H^\infty + C \) is the maximal ideal space of \(H^\infty \) with the unit disk removed.

Sarason shows in [9] that the linear span of \(H^\infty \) and \(C \) is closed. The observation that the “closure” of \(H^\infty + C \) coincides with the closed subalgebra of \(L^\infty \) generated by \(H^\infty \) and \(\mathbb{Z} \) allows us to conclude that \(H^\infty + C \) is an algebra and to identify its maximal ideal space. The latter is a special case of the following proposition which is itself of interest. Let \(X \) be a compact Hausdorff space and \(\mathcal{A} \) be a uniformly closed subalgebra of the space \(C(X) \) of continuous complex functions on \(X \) which separates points and contains the constants. Let \(\phi \) be a function on \(X \) having modulus one in \(C(X) \) and let \(\mathcal{A}(\phi) \) denote the closed subalgebra of \(C(X) \) generated by \(\mathcal{A} \) and \(\phi \). Then the maximal ideal space for \(\mathcal{A}(\phi) \) is obtained from that of \(\mathcal{A} \) by deleting the open set on which the Gelfand transform of \(\phi \) has modulus less than one.

Now let \(\mathcal{G} \) denote the uniformly closed subalgebra of \(\mathcal{E} \) generated by the operators \(T_\phi \) with \(\phi \) in \(H^\infty + C \). Note that \(\mathcal{G} \) is not a \(C^* \)-algebra.

Lemma 3. The algebra \(\mathcal{G} \) contains \(\mathcal{K} \) as a two-sided ideal and \(\mathcal{G}/\mathcal{K} \) is isometrically isomorphic to \(H^\infty + C \).

Proof. Since \(\mathcal{G} \) contains the \(C^* \)-algebra generated by the unilateral shift of multiplicity one, it follows from [3] that \(\mathcal{G} \) contains \(\mathcal{K} \) and \(\mathcal{K} \) is an ideal in any algebra of \(\mathcal{E} \) containing it. If \(p \) and \(q \) are trigonometric polynomials and \(\psi \) and \(\zeta \) are functions in \(H^\infty \), then a straightforward computation shows that the commutator of \(T_{\psi + p} \) and \(T_{\zeta + q} \) is compact. Thus the linear span of the operators of the form \(T_\phi + K \), where \(\phi \) is in \(H^\infty + C \) and \(K \) is in \(\mathcal{K} \), is an algebra. That it is in fact a
closed algebra follows from the inequality \(\| T_\phi + K \| \geq \| T_\phi \| \) proved in [2]. Therefore, \(\mathcal{G}/\mathcal{K} \) is commutative and the mapping \(T_\phi + K \leftrightarrow \phi \) is an isometrical isomorphism of \(\mathcal{G}/\mathcal{K} \) onto \(H^\infty + C \).

Corollary. If \(\phi \) is in \(H^\infty + C \), then \(T_\phi - \lambda \) is a Fredholm operator if and only if \(\phi - \lambda \) is an invertible element of \(H^\infty + C \).

Proof. If \(\phi - \lambda \) is an invertible element of \(H^\infty + C \), then it follows from the preceding lemma that \(T_\phi - \lambda \) is a Fredholm operator. Conversely, if \(T_\phi - \lambda \) is a Fredholm operator, then \(\pi (T_\phi - \lambda) \) is an invertible element of \(\mathcal{E}/\mathcal{K} \) and we must show that its inverse is in \(\mathcal{G}/\mathcal{K} \). This can be shown for a \(\phi \) in \(H^\infty \) and the problem for an arbitrary \(\phi \) in \(H^\infty + C \) is solved by approximating \(\phi \) by a function of the form \(z^{-n} \psi \) where \(\psi \) is in \(H^\infty \).

The preceding result determines when \(T_\phi - \lambda \) is a Fredholm operator. This combined with Lemma 1 will enable us to determine \(\sigma (T_\phi) \) when we have some effective method of determining the index of \(T_\phi - \lambda \). If \(\phi \) is continuous, the index of \(T_\phi - \lambda \) is equal to the negative of the topological index \(i_t (\phi, \lambda) \) of the curve determined by \(\phi \) with respect to \(\lambda \) (cf. [6]). In the case at hand we use the index of the curves \(\phi (re^{i\theta}) \) where \(\phi \) is the harmonic extension of \(\phi \) to the interior of \(D \). To this end we need to relate the invertibility of \(\phi \) in \(H^\infty + C \) to the function \(\phi \) on \(D \).

Lemma 4. A necessary and sufficient condition that \(\phi \) in \(H^\infty + C \) be invertible is that \(\phi^{-1} \) be in \(L^\infty \) and for each \(\epsilon > 0 \), there exists \(\delta > 0 \) so that \(\| \phi (re^{i\theta}) \| \geq 1/\| \phi^{-1} \|_\infty - \epsilon \) for \(1 > r \geq 1 - \delta \).

Proof. We again approximate \(\phi \) by a function of the form \(z^{-n} \psi \) with \(\psi \) in \(H^\infty \) and analyze the inner and outer factors of \(\psi \).

Lemma 5. If \(T_\phi - \lambda \) is a Fredholm operator, then \(i_t (T_\phi - \lambda) = -\lim_{R \to 1^-} i_t (\phi (Re^{i\theta}), \lambda) \).

Proof. From the Corollary and Lemma 4 it follows that for \(T_\phi - \lambda \) a Fredholm operator there exists \(0 < R < 1 \) so that \(\phi (re^{i\theta}) \neq \lambda \) for \(1 > r \geq R \). Since \(\phi \) is continuous on \(D \) we then have that \(i_t (\phi (re^{i\theta}), \lambda) \) is constant for \(r \geq R \) so that the limit exists. The proof is now accomplished with the same technique used in the preceding proof.

We can now determine the spectrum of \(T_\phi \) for \(\phi \) in \(H^\infty + C \).

Theorem. For \(\phi \) in \(H^\infty + C \) we have \(T_\phi \) is invertible if and only if

\[
\lim_{R \to 1^-} \inf_{0 \leq \theta < 2\pi; R \leq r < 1} | \phi (re^{i\theta}) | = \eta > 0
\]

and
COROLLARY. For ϕ in $H^\omega + C$ we have

$$\sigma(T_\phi) = \left\{ \lambda \left| \lim_{R \to 1^-} \inf_{0 < \theta < 2\pi, R \leq r < 1} |\hat{\phi}(re^{i\theta}) - \lambda| = 0 \right\} \cup \left\{ \lambda \left| \lim_{R \to 1^-} i_t(\hat{\phi}(re^{i\theta}), \lambda) \neq 0 \right\} \right.$$.

We make several comments before continuing to the vector valued case. Firstly, although the statement of the Theorem makes sense for an arbitrary ϕ in L^ω the Theorem is not valid in this generality. Secondly, $\lim_{r \to 0^+} i_t(\hat{\phi}(re^{i\theta}), \lambda) = 0$ does not imply that T_ϕ is invertible even for ϕ in H^ω. Thirdly, Widom has shown that $\sigma(T_\phi)$ is connected for ϕ in L^ω (cf. [11]). We remark that it follows from the Corollary to Lemma 3, Lemma 1 and the fact that the maximal ideal space of $H^\omega + C$ is connected [8] that $\sigma(T_\phi)$ is connected for ϕ in $H^\omega + C$. Lastly, using the identification of Wiener-Hopf operators with Toeplitz operators (cf. [5]), our Theorem can be used to determine the invertibility of a certain class of Wiener-Hopf operators.

We now describe the extension of our results to the vector valued case. Let \mathcal{E} be a finite dimensional Hilbert space and $\mathcal{L}(\mathcal{E})$ the ring of bounded operators on \mathcal{E}. Let $L^{2}_{\mathcal{E}}$ denote the Hilbert space of measurable \mathcal{E}-valued functions on T having square integrable norm, $H^{2}_{\mathcal{E}}$ the corresponding Hardy space of functions in $L^{2}_{\mathcal{E}}$ which have zero negative Fourier coefficients, and P the projection of $L^{2}_{\mathcal{E}}$ onto $H^{2}_{\mathcal{E}}$. Further, let $L^{2}_{\mathcal{E}(\mathcal{E})}$ denote the ring of bounded measurable $\mathcal{L}(\mathcal{E})$-valued functions on T and $H^{2}_{\mathcal{E}(\mathcal{E})}$ the Hardy space of functions in $L^{2}_{\mathcal{E}(\mathcal{E})}$ with zero negative Fourier coefficients. For Φ in $L^{2}_{\mathcal{E}(\mathcal{E})}$ we define the Toeplitz operator T_{Φ} on $H^{2}_{\mathcal{E}}$ by $T_{\Phi}f = P(\Phi f)$, where Φf denotes the pointwise product. Finally, let $C_{\mathcal{L}(\mathcal{E})}$ denote the space of continuous $\mathcal{L}(\mathcal{E})$-valued functions on T.

THEOREM. If Φ is in $H^{2}_{\mathcal{E}(\mathcal{E})} + C_{\mathcal{E}}$ then T_{Φ} is a Fredholm operator if and only if

$$\lim_{R \to 1^-} \inf_{0 < \theta < 2\pi, R \leq r < 1} |(\det \Phi)^{\wedge}(Re^{i\theta})| = \eta > 0$$

and this case

$$i_{\eta}(T_{\phi}) = - \lim_{R \to 1^-} i_t((\det \Phi)^{\wedge}(Re^{i\theta})).$$

PROOF. We briefly describe the changes necessary in the proof given for the scalar case. We define \mathcal{F} as the closed subalgebra of $\mathcal{L}(H^{2}_{\mathcal{E}})$.
generated by the T_Φ for Φ in $H^*_\mathcal{E}(\theta) + C_{\mathcal{L}(\theta)}$ and show \mathcal{G} contains as an ideal, the ring \mathcal{K} of compact operators on $H^*_{\mathcal{G}}$. Further, we show that \mathcal{G}/\mathcal{K} is isometrically isomorphic to the closed subalgebra $H^*_\mathcal{E}(\theta) + C_{\mathcal{L}(\theta)}$ of $L^*_\mathcal{E}(\theta)$. Again we show that $\pi(T_\Phi)$ is invertible in \mathcal{G}/\mathcal{K} if and only if it is invertible in \mathcal{L}/\mathcal{K}. Thus we find that T_Φ is a Fredholm operator if and only if $\det(\Phi)$ is an invertible element of $H^* + C$. Lastly, the index of T_Φ is computed using the fact that the determinant defines an isomorphism from the first homotopy group of the general linear group for \mathcal{C} onto the first homotopy group of the space of nonzero complex numbers.

Again using the isomorphism exhibited in [5] we can identify the operator T_Φ with a matrix valued Wiener-Hopf operator. In this context Gohberg and Kreín proved the preceding theorem for Φ in a certain subset of $C_{\mathcal{L}(\theta)}$.

Complete details will appear elsewhere along with extensions of the preceding results to the case of an infinite dimensional space \mathcal{C} as well as to Toeplitz operators defined on certain other Banach spaces.

BIBLIOGRAPHY

UNIVERSITY OF MICHIGAN