TWO TYPES OF LOCALLY COMPACT RINGS

BY SETH WARNER

Communicated by B. Yood, March 18, 1968

Here we shall present structure theorems for two types of commutative locally compact rings with identity. The first is for rings satisfying a rather stringent topological condition, namely, that there exist an invertible, topologically nilpotent element. An analysis of such rings requires basic theorems of commutative algebra and, in particular, a decomposition theorem for total quotient rings of one-dimensional Macaulay rings. One consequence of the structure theorem is the determination of necessary and sufficient conditions for a locally compact ring with identity to be the topological direct product of topological algebras over indiscrete locally compact fields.

The second is a theorem classifying all compatible metrizable locally compact topologies on a ring satisfying very stringent algebraic conditions, namely, that the ring be a special principal ideal ring in the sense of Zariski and Samuel [6, p. 245] of either zero or prime characteristic. For this investigation we require a theorem concerning finite-dimensional, locally compact, metrizable vector spaces over discrete fields, which shows that, in a certain sense, such spaces are not too remote from finite-dimensional vector spaces over indiscrete locally compact fields.

1. Commutative locally compact rings having an invertible, topologically nilpotent element. We recall that a local ring is a commutative ring with identity that has only one maximal ideal, and that the natural topology of a local noetherian ring is obtained by declaring the powers of its maximal ideal a fundamental system of neighborhoods of zero. Moreover, a local noetherian ring is compact for its natural topology if and only if it is complete and its residue field is finite. If \(A \) is a compact ring that algebraically is a local noetherian ring, then the topology of \(A \) is its natural topology [4, Theorem 4]. We recall also that a one-dimensional local noetherian ring is a Macaulay ring if and only if its maximal ideal is not an associated prime ideal of the zero ideal [7, p. 397].

Let \(B \) be a one-dimensional Macaulay ring topologized with its natural topology, and let \(m \) be its maximal ideal, \(p_1, \ldots, p_n \) the (isolated) prime ideals of the zero ideal. The complement of \(p_1 \cup \ldots \cup p_n \) is the set of cancellable elements of \(B \). Let \(A \) be the total quotient

\[\text{926} \]

\[1 \text{ Research supported by NSF grant GP 5933.} \]
ring of \(B \), topologized by declaring the neighborhoods of zero in \(B \) to be a fundamental system of neighborhoods of zero in \(A \); this topology we call the \(B \)-topology on \(A \). To show that \(A \) is a topological ring, it suffices to show that \(x \mapsto b^{-1}x \) is continuous at zero for any cancellable \(b \in B \); this is accomplished by observing that \(m \) is the only prime ideal of \(Bb \). Any element of \(m \) not belonging to \(p_1 \cup \ldots \cup p_n \) is an invertible, topologically nilpotent element of \(A \).

We shall say that a local noetherian ring is aligned if the prime ideals, ordered by inclusion, form a chain. Thus a one-dimensional aligned local noetherian ring has precisely two proper prime ideals, one contained in the other. The decomposition theorem needed is the following:

Theorem 1. If \(A \) is the total quotient ring of a one-dimensional Macaulay ring \(B \) and if \(A \) is topologized by the \(B \)-topology, then \(A \) is the topological direct product of ideals \(A_1, \ldots, A_n \), where each \(A_k \) is the total quotient ring of a one-dimensional aligned Macaulay ring \(B_k \) and is topologized by the \(B_k \)-topology.

A semilocal ring is a commutative ring with identity that has only finitely many maximal ideals. A Cohen algebra is a local algebra over a field whose maximal ideal has codimension one. Our structure theorem for commutative locally compact rings having an invertible, topologically nilpotent element is the following:

Theorem 2. Let \(A \) be a commutative locally compact ring with identity. The following statements are equivalent:

1°. \(A \) contains an invertible element that is topologically nilpotent.

2°. \(A \) is semilocal, and none of its maximal ideals is open.

3°. \(A \) is the topological direct product of a sequence \((A_k)_{1 \leq k \leq n} \) of ideals where each \(A_k \) is either a locally compact finite-dimensional Cohen algebra over the topological field of real or complex numbers or the topological quotient ring of a compact one-dimensional aligned Macaulay ring.

Outline of Proof. We first assume that \(A \) is totally disconnected and satisfies 1°. By a lemma of Kaplansky [3, Lemma 5], \(A \) contains a compact open subring \(B \) that contains the identity element of \(A \). By Kaplansky's characterization of compact semisimple rings [2, Theorem 16], the existence of an invertible, topologically nilpotent element implies that the radical \(R \) of \(B \) is open, so \(B/R \) is the cartesian product of finitely many finite fields. Raising idempotents from \(B/R \) to \(B \) and then using them to decompose \(A \), we conclude that \(A \) is the topological direct product of ideals \(A_1, \ldots, A_m \) where
each A_i contains a compact, open, local subring B_i. Once again the hypothesis that A_i has an invertible topologically nilpotent element implies that all the powers of the radical of B_i are open, so by a theorem of Kaplansky [2, Theorem 20], B_i is a local noetherian ring. It is easy to see, in fact, that B_i is a one-dimensional Macaulay ring and that A_i is the total quotient ring of B_i equipped with the B_i-topology. An application of Theorem 1 to each A_i shows that 3° holds and, in particular, that the radical of A is nilpotent. The general case is now established by use of the Pontryagin-van Kampen theorem on commutative, locally compact, connected groups, the nilpotence of the radical in the totally disconnected case, and the fact, proved by using standard theorems concerning finite-dimensional topological vector spaces over locally compact fields, that a locally compact local ring whose maximal ideal is nilpotent but not open is either connected or totally disconnected [5, Lemma 7].

Theorem 3. Let A be a commutative locally compact ring with identity. The following statements are equivalent:

1°. A contains an invertible element that is topologically nilpotent, and the additive order of each element of A is either infinite or a square-free integer.

2°. A is semilocal, none of its maximal ideals is open, and the additive order of each element of A is either infinite or a square-free integer.

3°. A is the topological direct product of topological algebras over indiscrete locally compact fields.

4°. A is the topological direct product of finitely many finite-dimensional Cohen algebras over indiscrete locally compact fields.

Outline of Proof. To show that 1° implies 4°, it suffices by Theorem 2 to consider the case where A is the total quotient ring of a one-dimensional aligned compact Macaulay ring B, equipped with the B-topology. Then A is local, and its maximal ideal m is closed, not open, and nilpotent. Consequently, A and A/m have the same characteristic. It follows easily that A contains an indiscrete topological subfield K that is the quotient field of a principal ideal domain D and that the open D-submodules of K form a fundamental system of neighborhoods of zero in K. We may therefore apply Corrol's theorem [1, Theorem 3] to conclude that the completion of K is a locally compact field. A modification of a proof of I. S. Cohen's theorem on complete equicharacteristic local rings [7, pp. 304–306] enables us to replace this field by a locally compact subfield that is canonically mapped onto A/m [5, Lemma 5].
COROLLARY. Let A be a locally compact ring with identity. The following statements are equivalent:

1°. The center of A contains an invertible element that is topologically nilpotent, and the additive order of each element of A is either infinite or a square-free integer.

2°. A is the topological direct product of finitely many topological algebras over indiscrete locally compact fields.

2. Locally compact metrizable special principal ideal rings. A special principal ideal ring [6, p. 245] is a principal ideal ring that has only one proper prime ideal, and that ideal is nilpotent. If A is a special principal ideal ring whose characteristic is either zero or a prime, then by I. S. Cohen’s theorem A is an algebra over a field K that has a basis $1, c, c^2, \ldots, c^s$, where $c^s = 0$. Suppose that K admits an indiscrete locally compact topology compatible with its field structure, and let $r \in [0, s - 1]$. Then Ac^r is the finite-dimensional subspace generated by c^r, \ldots, c^{s-1} and hence admits a unique topology making it a Hausdorff vector space over K. We topologize A by declaring the neighborhoods of zero in Ac^r to be neighborhoods of zero in A.

It is not difficult to verify that A, so topologized, is a topological ring (though if $r > 0$, A is a topological algebra over K only if K is given the discrete topology). This topology depends only on the topological field K and the numbers r and s, so we shall call it the (K, r, s)-topology. To show that every compatible locally compact metrizable topology on A is a (K, r, s)-topology, we require the following theorem:

Theorem 4. Let E be a totally disconnected, finite-dimensional, locally compact, metrizable vector space [algebra] over a discrete field K, and let $L = \{x \in E: \text{either } x = 0 \text{ or } Kx \text{ is indiscrete} \}$. Then L is an open subspace [open ideal] of E, and L is the topological direct sum of subspaces [ideals of E] E_1, \ldots, E_n, where for each $i \in [1, n]$, the locally compact group [ring] E_i admits the structure of finite-dimensional topological vector space [algebra] over an indiscrete locally compact field F_i under a scalar multiplication satisfying $\alpha.(\mu x) = \mu(\alpha.x)$ [and also $\alpha.(xy) = (\alpha.x)y$, $\alpha.(yx) = y(\alpha.x)$] for all $\alpha \in F_i$, $\mu \in K$, $x \in E_i$ [and $y \in E$]. If N is any algebraic supplement of L, then N is discrete, and E is the topological direct sum of E_1, \ldots, E_n, N.

Other than elementary facts, the proof depends only on the following three theorems: (1) The Baire Category Theorem (to show that if E is indiscrete, then K is uncountable); (2) There exist no
nonzero compact metrizable vector spaces over an uncountable dis­
tcrete field (a consequence of the theory of characters); (3) The Open
Mapping Theorem for separable, metrizable, locally compact groups.
An analogue of Theorem 4 also holds for connected, locally compact,
metrizable vector spaces and algebras over discrete fields.

Theorem 5. Let A be an indiscrete, locally compact, metrizable,
special principal ideal ring whose characteristic is either zero or a prime,
and let m be the maximal ideal of A. The topology of A is then the
(K, r, s)-topology, where K is an indiscrete locally compact field that
algebraically is a subfield of A and is mapped canonically onto A/m,
where r is the largest integer such that m^r is open, and where s is the index
of nilpotence of m.

Outline of Proof. From the existence of a coefficient field, The­
orem 4, and the fact that a field cannot admit both a connected and a
totally disconnected locally compact topology compatible with its
field structure, it follows that m^r with its induced topology is a con­
nected or totally disconnected, metrizable, locally compact finite-
dimensional algebra over an indiscrete locally compact field F. Using
again the special case of I. S. Cohen’s theorem for equicharacteristic
local rings having a nilpotent maximal ideal, we find a subfield K_0
of A that is algebraically isomorphic to F and acts on m^r as F does.
Transferring the topology of F to K_0 and applying [5, Lemma 5],
we obtained the desired conclusion.

References

 (1968), 179–189.
 1960.

Duke University