THE STRUCTURE OF TORSION ABELIAN GROUPS
GIVEN BY PRESENTATIONS

BY PETER CRAWLEY AND ALFRED W. HALEs

Communicated by R. S. Pierce, March 1, 1968

Let F_X denote the free abelian group freely generated by the set X, and let R be a subset of F_X. With $[R]$ denoting the subgroup of F_X generated by R, set

$$G(X, R) = F_X/[R],$$

i.e., $G(X, R)$ is that abelian group generated by X and subject only to the relations $r = 0$ all $r \in R$.

If each of the elements in R involves only one generator in X, then $G(X, R)$ is a direct sum of cyclic groups. On the other hand, if G is any abelian group, then $G \cong G(X, R)$, where each element in R involves at most three generators in X; indeed this isomorphism results if we take $X = G$ and R equal to the set of all elements in F_G of the form $x+y-z$, where $z = x+y$ in G.

Our purpose here is to investigate the structure of the group $G(X, R)$ in the intermediate case when each of the elements of R involves at most two generators, and $G(X, R)$ is a torsion group. We can evidently restrict our attention to p-groups, and in this case it is easily seen that $G(X, R) \cong G(X', R')$, where each element in R' is of one of the forms

p^nx or $p^nx - y$.

This leads us to the following definition. Let X be a set, V be a subset of the set of ordered pairs (x, y) with $x, y \in X$, u be a map of X to the nonnegative integers, and v be a map of V to the nonnegative integers. By $G(X, V, u, v)$ we mean that abelian group generated by X and subject only to the relations

$p^{u(x)}x = 0$ all $x \in X$,
$p^{v(x,y)}x = y$ all $(x, y) \in V$.

We say that an abelian p-group G is a T-group if $G \cong G(X, V, u, v)$ for some (X, V, u, v).

1 This work was supported in part by NSF Grants GP 7252 and GP 5497.
One property of T-groups is clear: the direct sum of a family of T-groups is again a T-group. Every divisible p-group is certainly a T-group, and the reduced part of a T-group is again a T-group.

Before stating our main results concerning these groups, let us recall a few basic definitions. Let G be any reduced abelian p-group. Define the subgroups $p^\alpha G$ for each ordinal α as usual by the rules:

$$p^0 G = G; \quad p^\alpha G = \{px | x \in p^{\alpha-1} G\} \text{ if } \alpha - 1 \text{ exists}; \quad p^\alpha G = \cap_{\beta < \alpha} p^\beta G \text{ if } \alpha \text{ is a limit ordinal.}$$

Since G is reduced, there is a first ordinal λ, called the length of G, such that $p^\lambda G = 0$. For each ordinal α we set

$$f_\alpha(\alpha) = \text{rank } p^\alpha G \cap G[p]/p^{\alpha+1} G \cap G[p],$$

where $G[p] = \{x \in G | px = 0\}$, and we call the cardinal number $f_\alpha(\alpha)$ the αth Ulm invariant of G. Finally we let ω denote the first infinite ordinal and Ω denote the first uncountable ordinal.

The description of T-groups is now accomplished by the following theorems.

(A) If G and H are reduced T-groups, then G and H are isomorphic if and only if $f_\alpha(\alpha) = f_\beta(\beta)$ for each ordinal α.

(B) Let f be a map of an ordinal λ to a set of cardinal numbers. Then there exists a reduced T-group G of length λ such that $f_\alpha(\alpha) = f(\alpha)$ for each $\alpha < \lambda$, if and only if f satisfies the following conditions:

(i) $\lambda = \sup \{\alpha + 1 | f(\alpha) \neq 0\}$;

(ii) if α is a limit ordinal such that $\alpha + \omega < \lambda$, and $0 \leq \eta < \omega$, then

$$\sum_{\alpha + \eta + \beta < \alpha + \omega} f(\beta) \geq \sum_{\alpha + \eta + \beta < \lambda} f(\beta).$$

(C) A reduced p-group G is a direct sum of countable groups if and only if G is a T-group of length at most Ω.

When specialized to countable p-groups, (A) and (C), of course, reduce to Ulm's Theorem, and in the case of direct sums of countable groups they reduce to the theorem of Kolettis [2]. Our results are not independent of Ulm's Theorem, however, since it is used to establish (C). The proofs of (A), (B) and (C) will appear elsewhere.

Actually T-groups have been studied before in a different guise. In [3], Nunke defines a reduced p-group G to be totally projective if

$$p^\alpha \text{Ext}(G/p^\alpha G, A) = 0$$

for all ordinals α and every group A, and he obtains a number of properties of these groups. Quite recently Hill [1] has announced that two totally projective groups with the same Ulm invariants are isomorphic. Now it is easily verified that if G is a reduced T-group and α is
an ordinal, then both \(p^\alpha G \) and \(G/p^\alpha G \) are T-groups. Moreover, (A) and (B) yield that a T-group whose length is a limit ordinal is a direct sum of T-groups of smaller length. These last two facts, in conjunction with [3, 2.6], imply that every reduced T-group is totally projective. On the other hand, if \(H \) is a totally projective group, then the function \(f_H \) necessarily satisfies condition (ii) of (B). Consequently there is a reduced T-group \(G \) having the same Ulm invariants as \(H \), and Hill's theorem guarantees that \(G \) and \(H \) are isomorphic. Thus a reduced abelian \(p \)-group is totally projective if and only if it is a T-group.

The foregoing results further provide a characterization of the class of all reduced T-groups in terms of certain natural group-theoretic properties. Let \(\mathcal{K} \) be a class of reduced abelian \(p \)-groups. Then \(\mathcal{K} \) coincides with the class of all reduced T-groups if and only if \(\mathcal{K} \) has the following properties: (1) \(\mathcal{K} \) is closed under isomorphism; (2) \(\mathcal{K} \) is closed under direct sums; (3) if \(G \in \mathcal{K} \) and the length of \(G \) is a limit ordinal, then \(G \) is a direct sum of groups in \(\mathcal{K} \) of smaller length; (4) for each \(p \)-group \(G \) and each ordinal \(\alpha, G \in \mathcal{K} \) if and only if both \(G/p^\alpha G, p^\alpha G \in \mathcal{K} \); (5) if an abelian \(p \)-group \(G \) has no elements of infinite height, i.e., \(p^\infty G = 0 \), then \(G \in \mathcal{K} \) if and only if \(G \) is a direct sum of cyclic groups. Thus the class of all reduced T-groups is the smallest class of reduced \(p \)-groups that has properties (1)–(4) and contains the finite groups.

References

Vanderbilt University,
California Institute of Technology and
University of California, Los Angeles