Consider the following diagram of pointed spaces and maps

where \(p_g = f \) and \(p \) is a fibration with fiber \(F \). Suppose that \(X \) is a CW-complex of dimension \(\leq 2\text{conn}(F) \) and \(\text{conn}(F) \leq 1 \) (\(\text{conn} \) = connectivity). Let \([X, Y]_B\) be the set of homotopy classes of pointed maps over \(f(H : X \times I \rightarrow Y) \) is a homotopy over \(f \) if \(pH_t = f \) for each \(t \in I \). Becker proved in [2], [3] that under these hypotheses \([X, Y]_B\) can be given an abelian group structure with \([g]\) as zero element.

The purpose of this note is to describe a spectral sequence of the Adams type which converges to \([X, Y]_B\). The differentials of the spectral sequence are the twisted operations described in [6], [7]. The sequence has the same relation to the method of computing \([X, Y]_B\) used in [6], [7] as the Adams spectral sequence has to the killing-homotopy method of computing ordinary homotopy groups. This note should be read as a sequel to [7].

A different spectral sequence for \([X, Y]_B\) is given by Becker in [3]. A sequence apparently similar to the one to be described here is mentioned in [4] and credited to Becker and Milgram.

1. The spectral sequence. Consider the following commutative diagram:

1 This research was partially supported by NSF Grant GP-6520.
where Y^2 is the square of Y, i.e. the pullback of p by p, and s is the canonical cross section. Write (Y^2, Y) for $(Y^2, s(Y))$. Let $A = A_p$ be the mod p Steenrod algebra and use Z_p coefficients for all cohomology. Let $i: F \subset Y^2$ and assume that $i^*: H^*(Y^2) \to H^*(F)$ is onto. Assume also that $H_j(F; Z)$ is finitely generated for each j. Let $A(Y) = H^*(Y) \odot A$ be the Massey-Peterson algebra [5]. Then $H^*(Y^2, Y)$ and $H^*(X, *)$ are $A(Y)$ modules via $p: Y^2 \to Y$ and $g: X \to Y$.

Theorem. Under the above hypotheses, there is a spectral sequence such that

1. $E_2^{pq} = \text{Ext}_{H^*(F)}^p(H^*(Y^2, Y), H^*(X, *))$
2. $E_2^{pq} = B^{p,q}/B^{p+1,q+1}$, where $[X, Y]_B = B^0 \supset B^1 \supset B^2 \supset \ldots$

and $\cap B^{p,q} = \text{all elements of } [X, Y]_B$ of finite order prime to p.

Notes. (1) $H^*(Y^2, Y)$ can be easily computed as an $A(Y)$ module in terms of $H^*(Y)$ by the results of [5].
(2) Low level computations with the spectral sequence are not difficult. However, the results can be obtained also, and sometimes more easily, by the methods of [6], [7]. The spectral sequence should ultimately prove valuable for proving general theorems about $[X, Y]_B$ (e.g., about immersion groups).
(3) If $B = *$ (a point) then the spectral sequence reduces, after a little manipulation of E_2, to the Adams spectral sequence for $[X, Y]$.

2. Sketch of the proof. Let \mathcal{Y} be the category of all triples (Z, ξ, δ) where $Y \xrightarrow{\xi} Z \xrightarrow{\delta} Y$ and $\xi \delta = 1$, i.e., of all coretractions of Y with given retraction. A morphism in the category is a map $m: Z \to W$ such that $m\xi = \omega$ and $\omega \delta = \eta$. Recall from [6], [7] that one can define a notion of homotopy in \mathcal{Y} (in the obvious way) and also cone, suspension, path, and loop functors enjoying the same properties as the usual functors on \mathcal{Y} (= the ordinary category of pointed spaces and maps). The cone-suspension sequence (Puppe sequence) and the path-loop sequence are exact after application of (\sim, Z) and (Z, \sim) respectively. (\sim, \sim) denotes the set of homotopy classes of maps in the category. In brief, all the notions concerning \mathcal{Y} generalize to \mathcal{Y}.

We will now apply an upside down version of Adams' method [1] to $g: Y^2 \to Y$. Since $[X, Y]_B = [X, Y^2] = [X \vee Y, Y^2]$, we can work in \mathcal{Y}. Suspension of Y^2 in \mathcal{Y} has the effect of suspending F in \mathcal{Y}. Successively larger pieces of the spectral sequence are obtained by taking successively higher suspensions of Y^2. We will be content here with one piece. Assume $\text{conn}(F) = n$. Consider the following commutative diagram in \mathcal{Y}.

A SPECTRAL SEQUENCE

983
Each A_i is a product of $K(Z_p, j)$'s, $a_1 = (q, u)$, where $u = (u_1, u_2, \cdots)$ and the i^*u_j's form a set of A generators for $H^j(F)$, $j \leq 2n + 1$. $v_m = (v_{m,1}, v_{m,2}, \cdots)$ and the $v_{m,j}$'s form a set of $A(X)$ generators for $(\ker a_m)^j$, $j = 2n + 1$.

The tower can be formally written as a new tower in $3Y$ simply by replacing A_m, $m > 0$, by $Y \times A_m$ and v_m by (q_m, v_m) where $q_m: Y_m \to Y$ is from the original tower. Each fibration $Y_m \to Y_{m-1}$ is a fibration in $3Y$ induced from a principal fibration in $3Y$.

Now apply the functor $(X \vee Y, -)$. The resulting exact couple gives the promised piece of the sequence.

REFERENCES