AN AXIOMATIC APPROACH TO THE BOUNDARY
THEORIES OF WIENER AND ROYDEN

BY PETER A. LOEB AND BERTRAM WALSH ¹

Communicated by John W. Green, April 8, 1968

In this note we announce results, obtained in the framework of
Brelot's axiomatic potential theory, which are applicable to the
Wiener and Royden boundary theories for Riemann surfaces.² Recall
that in Brelot's theory, we consider a sheaf 𝒞 of real-valued functions
with open domains contained in a locally compact, noncompact, con­
nected and locally connected Hausdorff space 𝒮, with the functions
satisfying certain axioms. Specifically, by a harmonic class of func­
tions on 𝒮 we mean a class 𝒞 of real-valued continuous functions
with open domains. For each open 𝛪 ⊆ 𝒮, 𝒞₀ denotes the set of func­
tions in 𝒞 with domains equal to 𝛳; it is assumed that 𝒞₀ is a real
vector space. The three axioms of Brelot which 𝒞 is assumed to
satisfy are (1) a function is in 𝒞 if and only if it is locally in 𝒞;
(2) there is a base for the topology of 𝒮 which consists of regions
regular for 𝒞, i.e. connected open sets 𝛲 such that any continuous
function 𝑓 on 𝜀 has a unique continuous extension in 𝒞 which
is nonnegative if 𝑓 is nonnegative; (3) the upper envelope of any in­
creasing sequence of functions in 𝒞₀ where 𝑀 is a region (i.e. open and
connected) is either +∞ or an element of 𝒞₀.

Let 𝒞⁻ and 𝒞₋ denote the classes of functions which are super-
harmonic and subharmonic with respect to 𝒞; let 𝒞₋⁻ denote the
subclass of 𝒞⁻ consisting of functions bounded below. We assume
as another axiom: (4) 1 ∈ 𝒞₋⁻.

Let 𝒮 be a Hausdorff space in which 𝒮 is imbedded as a dense
(and therefore open) subspace, and henceforth let us agree that 𝒮
will mean the closure of 𝒮 in 𝒮 and 𝜃 = 𝒮 − 𝒮. If 𝑀 is an open subset
of 𝒮, we shall say that 𝜃 is associated with 𝒞₋⁻ if every 𝑣 ∈ 𝒞₋⁻ whose
limit inferior is nonnegative at every point of 𝜃 is necessarily
nonnegative on 𝑀. Throughout this note, we shall denote lim sup
by lim sup; similar notation is used for lim inf and lim sup.

**Theorem 1.1. If 𝜃 is an open subset of 𝒮 and 𝜃 is associated with
monic and subharmonic with respect to 𝒞; let 𝒞⁻⁻ denote the
subclass of 𝒞⁻ consisting of functions bounded below. We assume
as another axiom: (4) 1 ∈ 𝒞₋⁻.

Let 𝒮 be a Hausdorff space in which 𝒮 is imbedded as a dense
(and therefore open) subspace, and henceforth let us agree that 𝒮
will mean the closure of 𝒮 in 𝒮 and 𝜃 = 𝒮 − 𝒮. If 𝑀 is an open subset
of 𝒮, we shall say that 𝜃 is associated with 𝒞₋⁻ if every 𝑣 ∈ 𝒞₋⁻ whose
limit inferior is nonnegative at every point of 𝜃 is necessarily
nonnegative on 𝑀. Throughout this note, we shall denote lim sup
by lim sup; similar notation is used for lim inf and lim sup.

**Theorem 1.1. If 𝜃 is an open subset of 𝒮 and 𝜃 is associated with
monic and subharmonic with respect to 𝒞; let 𝒞⁻⁻ denote the
subclass of 𝒞⁻ consisting of functions bounded below. We assume
as another axiom: (4) 1 ∈ 𝒞₋⁻.

¹ The first author was supported by National Science Foundation research grants
GP-5279 and GP-4653; the second author by GP-4563.
² These results will appear with proofs as part of a forthcoming article in the
Annales de l'Institut Fourier.
Assume that ∂W is associated with \mathcal{E}^B_W; then given a bounded real-valued function f on $\partial \Omega$ (where Ω is an open subset of W) one can define $H^-(f, \Omega) \subseteq \mathcal{E}$ to be the lower envelope of the set $\{v \in \mathcal{E}_q^B : \lim \inf_v v(x) \geq f(x) \text{ for all } x \in \partial \Omega \}$ and dually define $H^-(f, \Omega)$ as respectively the upper- and lower-\mathcal{E}-extensions of f in Ω. If they are equal, we say that f is resolutive on $\partial \Omega$. A point $x_0 \in \partial \Omega$ for which $\limsup H^-(f, \Omega)(x_0) \leq \lim \sup f(x_0)$ for every bounded function f on $\partial \Omega$ is said to be regular (with respect to \mathcal{E}). Given $x_0 \in \partial \Omega$, a positive function $b \in \mathcal{E}$ defined in the intersection of Ω with an open neighborhood of x_0 and for which $\lim b(x_0) = 0$ is called an \mathcal{E}-barrier (or simply a barrier) for Ω at x_0.

We say that there is a system of barriers for Ω (or, for emphasis, Ω) at x_0 if there is a base θ for the neighborhood system of x_0 such that on the intersection of Ω with $\omega \cap \partial \Omega$ there is defined a barrier b for Ω at x_0 with

$$\inf \{\lim \inf b(x_i) : x_i \in \partial(\omega \cap \Omega) - (\omega \cap \partial \Omega)\} > 0.$$

Such a barrier is said to belong to Ω and ω. An \mathcal{E}-unit-barrier for Ω at x_0 is a function $b_1 \in \mathcal{E}$, defined on the intersection of Ω with a neighborhood of x_0 and such that $\lim b_1(x_0) = 1$. With these definitions, we have

THEOREM 1.2. Let x_0 be a point of $\partial \Omega$. Assume there is a system of barriers and an \mathcal{E}-unit-barrier for Ω at x_0. Then x_0 is a regular point for Ω.

2. Let \mathcal{E} be a harmonic class which is hyperbolic on W [5, p. 189], and let \mathcal{E}_W denote the set of all bounded \mathcal{E}-harmonic functions on W. Then \mathcal{E}_W is a Banach lattice with order unit $H(W)$, where $H(W)$ is the greatest \mathcal{E}-harmonic minorant of 1. The lattice operation $\land_{\mathcal{E}}$ is given by defining $f \land_{\mathcal{E}} g$ to be the least \mathcal{E}-harmonic majorant of the pointwise supremum $f \lor g$, and $\land_{\mathcal{E}}$ is similarly defined.

We next consider ideal boundary theory for an arbitrary Banach sublattice \mathfrak{A} of \mathcal{E}_W when $H(W) \in \mathfrak{A}$. Some examples of such sublattices are:

(1) \mathcal{E}_W itself.
(2) \mathcal{E}_W is a Banach lattice with order unit $H(W)$, where $H(W)$ is the greatest \mathcal{E}-harmonic minorant of 1. The lattice operation $\land_{\mathcal{E}}$ is given by defining $f \land_{\mathcal{E}} g$ to be the least \mathcal{E}-harmonic majorant of the pointwise supremum $f \lor g$, and $\land_{\mathcal{E}}$ is similarly defined.

We next consider ideal boundary theory for an arbitrary Banach sublattice \mathfrak{A} of \mathcal{E}_W when $H(W) \in \mathfrak{A}$. Some examples of such sublattices are:

(1) \mathcal{E}_W itself.
(2) \mathcal{E}_W is a Banach lattice with order unit $H(W)$, where $H(W)$ is the greatest \mathcal{E}-harmonic minorant of 1. The lattice operation $\land_{\mathcal{E}}$ is given by defining $f \land_{\mathcal{E}} g$ to be the least \mathcal{E}-harmonic majorant of the pointwise supremum $f \lor g$, and $\land_{\mathcal{E}}$ is similarly defined.

We next consider ideal boundary theory for an arbitrary Banach sublattice \mathfrak{A} of \mathcal{E}_W when $H(W) \in \mathfrak{A}$. Some examples of such sublattices are:

(1) \mathcal{E}_W itself.
(2) \mathcal{E}_W is a Banach lattice with order unit $H(W)$, where $H(W)$ is the greatest \mathcal{E}-harmonic minorant of 1. The lattice operation $\land_{\mathcal{E}}$ is given by defining $f \land_{\mathcal{E}} g$ to be the least \mathcal{E}-harmonic majorant of the pointwise supremum $f \lor g$, and $\land_{\mathcal{E}}$ is similarly defined.
(b) \(D(f,f) + \int_W P^2 < \infty \) where \(D(f,f) \) is the Dirichlet integral of \(f \).

Let a Banach sublattice \(\mathcal{S} \) of \(\mathfrak{B}^\infty \) containing the order unit, \(H(W) \), be given. Now form the \(Q \)-compactification \([2, \text{pp. 96–97}]\) and \([\alpha]\) \(W^*_{\mathcal{S}} \) of \(W \) with \(Q = \mathcal{S} \); this is a compact Hausdorff space containing \(W \) as a dense subspace, determined up to homeomorphism by the properties that each \(f \in \mathcal{S} \) has a continuous extension to \(W^*_{\mathcal{S}} \) and that the family of all these extensions separates the points of \(\Delta_{\mathcal{S}} = W^*_{\mathcal{S}} - W \). Define

\[
\Gamma_{\mathcal{S}} = \{ t \in \Delta_{\mathcal{S}} : H(W)(t) = 1 \} \cap \bigcap_{f, g \in \mathcal{S}} \{ t \in \Delta_{\mathcal{S}} : (f \wedge g)(t) = (f \wedge g)(t) \}
\]

and let \(W_{\mathcal{S}} = W \cup \Gamma_{\mathcal{S}} \). Then

Theorem 2.1. \(\Gamma_{\mathcal{S}} \) is associated with \(\mathfrak{K}^b_{W} \), whence \(\Gamma_{\mathcal{S}} \) is nonempty.

Theorem 2.2. If \(M \subseteq \Delta_{\mathcal{S}} \) is a closed set which is associated with \(\mathfrak{K}^b_{W} \), then the restriction map \(f \mapsto f|_M \) of \(\mathcal{S} \) into \(\mathfrak{C}_R(M) \) is an isometry (not necessarily onto) preserving positivity in both directions.

Now by the lattice form of the Stone-Weierstrass theorem we have

Theorem 2.3. The restriction mapping \(f \mapsto f|_{\Gamma_{\mathcal{S}}} \) of \(\mathcal{S} \) into \(\mathfrak{C}_R(\Gamma_{\mathcal{S}}) \) is a surjective isometry sending the order unit of \(\mathcal{S} \) to the order unit \(1 \) of \(\mathfrak{C}_R(\Gamma_{\mathcal{S}}) \) and preserving the lattice operations.

Theorem 2.4. \(\Gamma_{\mathcal{S}} \) is the intersection of all sets \(\Gamma_p = \{ t \in \Delta_{\mathcal{S}} : \lim \inf_p p(t) = 0 \} \) as \(p \) ranges through the \(\mathfrak{K} \)-potentials on \(W \). No proper closed subset of \(\Gamma_{\mathcal{S}} \) is associated with \(\mathfrak{K}^b_{W} \).

Theorem 2.5. Except perhaps when \(\mathcal{S} \) consists only of constant functions, there is an \(\mathfrak{K}_{\infty} \)-unit barrier and a system of barriers for \(W^*_{\mathcal{S}} \) at each point of \(\Gamma_{\mathcal{S}} \), whence each \(x \in \Gamma_{\mathcal{S}} \) is regular with respect to any open set \(\Omega \subseteq W \) for which \(x \in \partial \Omega \cap \Gamma_{\mathcal{S}} \). (Here \(\partial \Omega \) is taken in \(W^*_{\mathcal{S}} \).)

Theorem 2.6. Let \(\mathfrak{S} \) denote those bounded functions in \(\mathfrak{K}^b_{W} \) for which the greatest \(\mathfrak{K} \)-harmonic minorant is in \(\mathcal{S} \). For any \(v \in \mathfrak{S} \), let \(I(v) \) be the function on \(\Gamma_{\mathcal{S}} \) defined by \(I(v)(t) = \lim \inf_W v(t) \) for each \(t \in \Gamma_{\mathcal{S}} \). Then \(I(v) \) is continuous on \(\Gamma_{\mathcal{S}} \) for each \(v \in \mathfrak{S} \), and the mapping \(I : \mathfrak{S} \mapsto \mathfrak{C}_R(\Gamma_{\mathcal{S}}) \) is positively homogeneous and additive.

If \(W \) is an open Riemann surface, \(\mathfrak{K} \) the class of harmonic functions in the usual sense, and \(\mathfrak{S} = \mathfrak{B}^\infty \), then \(\Gamma_{\mathcal{S}} \) is homeomorphic to the harmonic part of the Wiener boundary even though \(\Delta_{\mathcal{S}} \) is "smaller" than the Wiener boundary. If \(\mathfrak{S} \) is the uniform closure of \(\mathfrak{B}^\infty \), the bounded harmonic functions with finite Dirichlet integrals, then \(\Gamma_{\mathcal{S}} \)
is the harmonic part of the Royden boundary and $\mathcal{B}_{\Omega}^{\mathcal{W}}$ is isometrically isomorphic to a dense subset of $\mathcal{C}_{\mathcal{R}}(\Gamma_{\Phi})$.

BIBLIOGRAPHY

University of California, Los Angeles