SCHAUDER DECOMPOSITIONS IN BANACH SPACES

BY WILLIAM J. DAVIS

Communicated by B. Yood, June 21, 1968

A sequence \((M_i) \) of closed subspaces of a Banach space \(E \) is called a Schauder decomposition of \([M_i] \), the smallest subspace containing \(\cup M_i \), if every element \(u \) of \([M_i] \) has a unique, norm convergent expansion \(u = \sum u_i \), where \(u_i \in M_i \) for \(i = 1, 2, \cdots \). It is well known (see, e.g. [2]) that any sequence \((u_i) \subseteq E \) with \(0 \neq u_i \in M_i \) for \(i = 1, 2, \cdots \) is basic (i.e., a basis for its closed linear span). The converse of this statement is not true, but we do derive the following theorem, and mention several corollaries.

Theorem. Let \((M_i) \) be a sequence of closed subspaces of the Banach space \(E \) such that each sequence \((u_i) \subseteq E \) with \(0 \neq u_i \in M_i \) is basic. Then there exists an integer \(N \) such that \((M_i)_{i \geq N} \) is a Schauder decomposition of \([M_i]_{i \geq N} \).

To simplify the proof of the theorem, we use the following characterization of Schauder decompositions due to Grinblyum [3]. A sequence \((M_i) \) of closed subspaces of \(E \) is a Schauder decomposition of \([M_i] \) if and only if there exists a constant \(K \) such that for all integers \(n, m \) and all sequence \((u_i) \) with \(u_i \in M_i \), \(\sum_{i=1}^{n} u_i \leq K \sum_{i=1}^{m} u_i \).

We note that this norm condition may be replaced by \(\sum_{i=1}^{n} a_i u_i \leq K \sum_{i=1}^{m} a_i u_i \) where the scalars \((a_i) \) are also arbitrary. Since a sequence \(U = (u_i) \) is basic if and only if there exists \(K = K(U) \) such that this last inequality holds for all \((a_i), m \) and \(n \), we see that each \((u_i) \) with \(u_i \in M_i \) is basic if \((M_i) \) is a Schauder decomposition.

Let \(U = (u_i) \) be a sequence with \(0 \neq u_i \in M_i \), and set \(U_n = (u_i)_{i \geq n} \). Let \(K(U_n) \) be the smallest constant such that \(\| \sum_{i=-n}^{p} a_i u_i \| \leq K \| \sum_{i=-n}^{p} a_i u_i \| \) holds for all \(K \geq K(U_n) \), all \((a_i) \) and integers \(p, q \).

Lemma. Let \((M_i) \) be a sequence of closed subspaces of \(E \) such that each \(U = (u_i) \) with \(0 \neq u_i \in M_i \) is basic. Then there exists an integer \(N \) and a constant \(K \geq 1 \) such that every sequence \(U \) as above has \(K(U_n) \leq K \).

Proof. If \(K \) and \(N \) do not exist, then for each integer \(n \) and each \(M \geq 1 \), there exists a \(U \) with \(K(U_n) > M \) (noting \(K(U_{n+1}) \leq K(U_n) \)). Choose \(U^{(1)} \) so that \(K(U^{(1)}) > 2 \). Then there exist integers \(q_1 > p_1 \) such that \(\| \sum_{i=1}^{p_1} a_i u_i^{(1)} \| > 2 \| \sum_{i=1}^{p_1} a_i u_i^{(1)} \| \) for some sequence \((a_i) \). Similarly, there exist \(U^{(2)} \) and \(q_2 > p_2 \) such that

\[\sum_{i=1}^{p_2} a_i u_i^{(2)} \]

This work was supported by N.S.F. Grant Number GP-6152.
and in general we get $U^{(j)}$ and integers p_j, q_j such that $q_{j-1} < p_j < q_j$ and

$$\left\| \sum_{i=q_{j-1}+1}^{p_i} a_i u_i^{(j)} \right\| > 2^j \left\| \sum_{i=q_{j-1}+1}^{q_i} a_i u_i^{(j)} \right\|.$$

With these bounds, the sequence U defined by $u_i = u_i^{(j)}$ if $q_{j-1} < i \leq q_j$ is not basic, which is a contradiction proving the lemma.

The theorem follows immediately from the lemma and the Grinblyum criterion.

To see that N is in general greater than 1, let E be separable, (x_i) a basic sequence in E such that $\text{codim } [x_i] = \infty$ and E_i a closed subspace of E which is a quasicomplement but not a complement of $[x_i]$ in E. (For a construction of such an E_i see Gurarii and Kadec [4].) If we set $M_1 = E_1$, $M_2 = [x_1]$, $M_3 = [x_2]$, etc., each sequence with just one element in each M_i is basic, but (M_i) is not a Schauder decomposition of E since $M_1 + [x_i] \subsetneq E$. In order to have $N = 1$, then, we must keep $[M_i] i < N$ from being a quasicomplement of $[M_i] i \geq N$ for each N. In fact, the addition of this hypothesis is also sufficient, for then we see that $[M_i] = M_1 \oplus M_2 \oplus \cdots \oplus M_{N-1} \oplus [M_i] i \geq N$, and so (M_i) is a Schauder decomposition of $[M_i]$. These corollaries are now immediate. In each, we let U be an arbitrary sequence (u_i) with $0 \neq u_i \in M_i$, and call U a proper sequence.

Corollary. A sequence (M_i) of closed subspaces of E is a Schauder decomposition if and only if (a) $[M_i] = [M_i] i < n \oplus [M_i] i \leq n$ and (b) each proper sequence U is basic.

Corollary. The previous corollary holds with (a) replaced by (a')

$$[M_i] = M_k \oplus [M_i] i = k$$

for each k.

Corollary. Let (M_i) be a sequence of finite-dimensional subspaces of E. Then (M_i) is a Schauder decomposition if and only if each proper sequence is basic.

It is easy to see that an N dimensional Banach space F has a basis $(f_i)_{i=1}^{N}$ such that

$$\left\| \sum_{i=1}^{p} a_i f_i \right\| \leq N \left\| \sum_{i=1}^{N} a_i f_i \right\|.$$
always holds (using, for example, the result of Taylor [5]). The author does not know what the best bound that can replace \(N \) in general will be, but it must be greater than 1 (see, e.g. [1]). However, using the last corollary, and the \(N \)-bound above, we obtain:

Proposition. Let \(\dim M_i \leq N_i \), \(M_i \subseteq E \) for \(i = 1, 2, \cdots, \) and \([M_i] = E \). Set \(N_j = \dim M_1 + \dim M_2 + \cdots + \dim M_j \). The following are equivalent

(a) \((M_i)\) is a Schauder decomposition of \(E \),
(b) \(E \) has a basis \((x_i)\) with \(M_j = [x_i \mid N_{j-1} < i \leq N_j] \),
(c) each proper sequence is basic.

The proof of the proposition is a routine exercise.

Problem. Does the previous result hold with the weaker assumption \(\dim M_i < \infty \)?

References

1. F. Bohnenblust, *Subspaces of \(l_{m,n} \) spaces*, Amer. J. Math. 63 (1941), 64–72.

Ohio State University