The fundamental lemma of complexity for arbitrary finite semigroups

Author:
John Rhodes

Journal:
Bull. Amer. Math. Soc. **74** (1968), 1104-1109

MathSciNet review:
0232873

Full-text PDF

References | Additional Information

**1.**Kenneth Krohn and John Rhodes,*Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines*, Trans. Amer. Math. Soc.**116**(1965), 450–464. MR**0188316**, 10.1090/S0002-9947-1965-0188316-1**2.**Kenneth Krohn, John Rhodes and Bret Tilson, "Lectures on the algebraic theory of finite semigroups and finite state machines," Chapters 1, 5-9 (Chapter 6 with M. A. Arbib, in,*Algebraic theory of machines, languages, and semigroups*, edited by M. A. Arbib, Academic Press, New York, 1968.**3.**Kenneth Krohn and John Rhodes,*Complexity of finite semigroups*, Ann. of Math. (2)**88**(1968), 128–160. MR**0236294****4.**John Rhodes,*A proof of the fundamental lemma of complexity for arbitrary finite semigroups*, to be submitted to Math. Systems Theory.**5.**John Rhodes,*A homomorphism theorem for finite semigroups*, Math. Systems Theory**1**(1967), 289–304. MR**0223473****6.**John Rhodes,*Characters and complexity of finite semigroups*, J. Combinatorial Theory**6**(1969), 67–85. MR**0236293****7.**John Rhodes and Bret Tilson,*Lower bounds for complexity of finite semigroups*, submitted to Math, Systems Theory.**8.**H. P. Zeiger,*Cascade synthesis of finite-state machines*, Information and Control 10 (1967), 419-433, plus erratum.

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9904-1968-12064-6