ON POLYNOMIALS AND ALMOST-PRIMES

BY G. J. RIEGER

Communicated by Ivan Niven, July 31, 1968

There exist infinitely many numbers \(n^2 - 2 \) having at most 3 prime factors [1], [3]. We prove here that there exist infinitely many numbers \(p^2 - 2 \) (\(p \) prime) having at most 5 prime factors; a similar result with the bound 7 instead of 5 can be found in [5] and, under the Riemann hypothesis, with the bound 5. We use the sieve-method, essentially in the version of Jurkat and Richert as given in [6], and also ideas of Kuhn, de Bruijn, and Bombieri.

Let

\[
\begin{align*}
 w(u) &= u^{-1} \quad \text{for } 1 \leq u \leq 2, \\
 (uw(u))' &= w(u - 1) \quad \text{for } u \geq 2, \\
 D(u) &= u \quad \text{for } 0 \leq u \leq 1, \\
 (u^{-1}D(u))' &= -u^{-2}D(u - 1) \quad \text{for } u \geq 1;
\end{align*}
\]

here we take the right-hand derivative for integers \(u \geq 0 \); let \(w \) be continuous at \(u = 2 \) and \(D \) be continuous at \(u = 1 \). Define

\[
\begin{align*}
 \lambda(u) &= e^\gamma u u^{-1}(uw(u) - D'(u - 1)) \\
 \Lambda(u) &= e^\gamma u u^{-1}(uw(u) + D'(u - 1))
\end{align*}
\]

where \(\gamma \) is the Euler constant.

Let \(P \) be the set of all primes \(p \equiv \pm 1 \mod 8 \); \(p_0 = 1 \); denote by \(p_j \) the \(j \)-th number of \(P \) in natural order. Denote by \(\mu \) the Moebius function and by \(\phi \) the Euler function; let

\[
\begin{align*}
 V(n) &= \sum_{p \mid n} \sum_{d \mid n} 1, \\
 Q &= \{ d : \mu(d) \neq 0 \land (p \mid d \Rightarrow p \in P) \}, \\
 f(d) &= 2^{-\nu(d)}\phi(d), \\
 g(d) &= f(d) \prod_{p \mid d} (1 - f(p)^{-1}) \quad (d \in Q), \\
 P(\rho) &= \prod_{1 \leq j \leq \rho} p_j, \\
 R(\rho) &= \prod_{1 \leq j \leq \rho} (1 - f(p_j)^{-1}), \\
 S(x, \rho) &= \sum_{1 \leq a \leq x; a \mid P(\rho)} g(a)^{-1}.
\end{align*}
\]

Using generating functions we find

\(^1\) Supported by National Science Foundation Grant GP 9038.
ON POLYNOMIALS AND ALMOST-PRIMES

\[R(p) = \alpha e^{\gamma} \log p + O(1) \quad (\rho \geq 0), \]
\[\sum_{1 \leq d \leq x; d \in \mathbb{Q}} g(d)^{-1} = \alpha \log x + O(1), \]

where
\[\alpha = \frac{1}{2} \prod_{p \in \mathbb{P}} \left(1 + \frac{3p - 1}{p^2(p - 3)} \right) \prod_{2 < p \in \mathbb{P}} (1 - p^{-2}). \]

After some calculations one arrives at (see also [6], (2.31))
\[S(x, p) = e^{-\gamma} R(p) - D + O(x^{\rho}) \quad (x > 1, p \geq 0). \]

The number of elements of a finite set \(M \) of natural numbers is denoted by \(|M| \); let \(M^a := \{ m \in M : m \in a \} \),
\[A(M^a, p) := |\{ m \in M^a : m \equiv a \mod p \}| \quad (p \geq 0). \]

For \(p \geq 0 \) and \((a, P(p)) = 1 \) we have
\[A(M^a, p) = |M^a| - \sum_{1 \leq j \leq p} A(M^a, P(p)) - 1 \]

Let
\[\pi(x; d, r) := |\{ p : 2 \leq p \leq x \land p \equiv r \mod d \}|, \]
\[\eta(x; d) := \max_{1 \leq r \leq d; (r, d) = 1} |\pi(x; d, r) - \frac{\lfloor x/d \rfloor}{\phi(d)}|. \]

For \(M = M(x) := \{ p^2 - 2 : 2 \leq p \leq x \} \) we have
\[|M_d| - \frac{\lfloor x/d \rfloor}{\phi(d)} \leq 2^y \eta(x, d) \quad (d \in \mathbb{Z}). \]

Application of the sieve method gives:
For \(x \geq 2, M = M(x), t > 1, a \in \mathbb{Q}, \rho \geq 0, (a, P(p)) = 1 \) we have
\[A(M^a, p) \leq \frac{\lfloor x \rfloor}{f(a)S(x, \rho)} + O(r_{x, a}(t^2)), \]

where
\[r_x(x, a, v) := \sum_{1 \leq d \leq x; d \in \mathbb{Q}} 5^{y(d)} \eta(x, ad) \quad (v \geq 1). \]

For \(0 \leq r \leq \rho, (a, P(p)) = 1 \) one finds easily
\[r_r(x, a, v) + \sum_{r < j \leq \rho} r_{j-1}(x, a \phi_j, \frac{v}{\phi_j}) \leq r_x(x, a, v). \]
After some calculations one arrives at (see also [7, (4.18)]):

For \(x \geq 2, \ M = M(x), \ \rho > 0, \ (a, \ P(\rho)) = 1, \ \rho_\rho \leq t^2, \ y^* := \lim x/f(a) \) we have

\[
A(M_\rho, \rho) \leq \lambda \left(\frac{\log t^2}{\log \rho} \right) + O \left(\frac{r_\rho(x, a, t^2)}{y^* R(\rho)} \right) + O((\log \log 3t)^{-\gamma}),
\]

\[
\geq \lambda \left(\frac{\log t^2}{\log \rho} \right) - O \left(\frac{r_\rho(x, a, t^2)}{y^* R(\rho)} \right) - O((\log \log 3t)^{-\gamma}).
\]

Following Kuhn, define

\[
C(x; \rho, \sigma) := \left\{ \left\{ \rho - 2 : 2 \leq \rho \leq x \wedge (1 \leq j \leq \rho \Rightarrow p_j \geq (\rho - 2)) \right\} \wedge (\rho < j \leq \sigma \Rightarrow p_j \geq (\rho - 2)) \wedge \sum_{p_j \leq (\rho - 2)} 1 \leq 1 \right\}
\]

for \(x \geq 2, \ 1 \leq \rho < \sigma \). For \(u := \log t^2/\log \rho, \ v := \log t^2/\log \rho, \gamma > 9^{-2}, \ u^{-1} \]

\(+ v^{-1} \leq 1 \) we get

\[
\frac{C(x; \rho, \sigma)}{\lim x R(\rho)} \geq \lambda(v) - \frac{1}{2} \int_u^\infty \lambda(v(1 - t^{-1}))t^{-1}dt - O \left(\frac{r_\rho(x, 1, t^2)}{\lim x R(\rho)} \right)
\]

\[- O((\log \log 3t)^{-\gamma}).\]

For \(t^2 := x^{1/2}(\log x)^{-\beta} \) with suitable \(\beta > 0 \) and for arbitrary \(\sigma > 0 \) we have

\[r_\rho(x, 1, t^2) = O(x(\log x)^{-\gamma}),\]

according to [2]. We choose \(z, \xi, \rho, \rho_* \) by virtue of

\[\log z := \frac{1}{6} \log x^{1/2}, \ \log \xi := \frac{17}{21} \log x^{1/2}, \]

\[\rho \leq z < \rho_\rho + 1, \ \rho_* \leq \xi < \rho_\rho + 1, \]

and write \(C(x) \) instead of \(C(x; \rho, \sigma) \). Since

\[\lambda(6) - \frac{1}{2} \int_{21/17}^6 \lambda(6(1 - t^{-1}))t^{-1}dt > 0, \]

by [4], we get

Theorem. There exists a constant \(c > 0 \) such that

\[C(x) > cx(\log x)^{-2} \quad (x \geq 2). \]
For any \(p \), counted in \(C(x) \), the number \(p^2 - 2 \) has

(i) no prime factors \(\leq x^{1/12} \),

(ii) at most one prime factor between \(x^{1/12} \) and \(x^{17/42} \)

(iii) prime factors larger than \(x^{17/42} \) otherwise;

since \(5 \cdot 17/42 > 2 \), we have \(V(p^2 - 2) \leq 5 \).

These fractions can be improved upon, but we were unable to replace 5 by 4.

More details and related results will be contained in lecture notes. Compare also [6].

References

STATE UNIVERSITY OF NEW YORK AT BUFFALO, BUFFALO, NEW YORK 14214