CROSS SECTIONALLY CONTINUOUS SPHERES IN E^3

BY L. D. LOVELAND

Communicated by Richard Anderson, November 7, 1968

W. T. Eaton [5] and Norman Hosay [6] independently solved a problem raised by Alexander [1] when they proved that cross sectionally simple spheres in E^3 are tame. A 2-sphere S in E^3 is cross sectionally simple if the intersection of S with each horizontal plane $P_t = \{(x, y, z)|z=t\}$ is either empty, a point, or a simple closed curve. The purpose of this note is to show that Eaton's proof, adjusted slightly to incorporate recent results by J. W. Cannon [4], actually shows that cross sectionally continuous spheres are tame. A 2-sphere S in E^3 is cross sectionally continuous if each $S \cap P_t$ is a locally connected continuum. The question about the tameness of cross sectionally connected spheres remains open [2].

As in [5] we assume that the cross sectionally continuous sphere S intersects P_t if and only if $-1 \leq t \leq 1$, and we denote the continuum $P_t \cap S$ by J_t.

There are two observations to make before we proceed to details of the adjustment of Eaton's proof. First we observe that at most countably many J_t fail to be simple closed curves. This is because a locally connected continuum that is not a simple closed curve must contain a simple triod, and S cannot contain uncountably many disjoint triods [7]. The second observation is that a tame nondegenerate continuum J_t on S is a taming set; that is, each 2-sphere containing J_t and locally tame modulo J_t is tame [4]. In the following paragraphs, we indicate briefly how to incorporate these two observations into Eaton's proof to establish

Theorem 1. Cross sectionally continuous 2-spheres in E^3 are tame.

Let R be a countable subset of $[-1, 1]$ such that

1. if J_t is not a simple closed curve, then $t \in R$ and
2. R contains a subset X dense in $[-1, 1]$ such that for $t \in X$, J_t is a simple closed curve, and let $Q = [-1, 1] - R$.

One may think of R as the set of rational numbers in $[-1, 1]$. Lemma 1 of [5] remains valid for cross sectionally continuous spheres as long as t is restricted to Q, and Lemma 2 of [5] is retained as it stands.

1 This research was partially supported by NSF-GP-7058 and NSF-GP-8454.
The three steps given in the proof of Lemma 3 of [5] require little change here. Eaton's Step I is used here for each degenerate J_i ($i = 1, -1$). Otherwise we skip Step I. To accomplish Step II we use Cannon's result that each J_r ($r \in R$) is a taming set, together with the techniques of [3]. In Step III we again restrict t to Q. No other changes are required.

Actually we have outlined a proof for the following more general theorem.

Theorem 2. If each horizontal cross section of a 2-sphere S in E^3 is connected and at most countably many of these cross sections fail to be locally connected, then S is tame.

References

Utah State University, Logan, Utah 84321 and
University of Utah, Salt Lake City, Utah 84112