Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Cross sectionally continuous spheres in $E^3$


Author: L. D. Loveland
Journal: Bull. Amer. Math. Soc. 75 (1969), 396-397
DOI: https://doi.org/10.1090/S0002-9904-1969-12191-9
MathSciNet review: 0239601
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
  • 2. R. H. Bing, Topology Seminar, Wisconsin, 1965, Ann. of Math. Studies No. 60, Princeton Univ. Press, Princeton, N. J., p 82.
  • 3. R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45. MR 160194
  • 4. J. W. Cannon, Characterization of taming sets on 2-spheres, Notices Amer. Math. Soc. 15 (1968), 768.
  • 5. W. T. Eaton, Cross sectionally simple spheres, Bull. Amer. Math. Soc. 75 (1969), 375-378. MR 239600
  • 6. Norman Hosay, A proof of the slicing theorem for 2-spheres, Bull. Amer. Math. Soc. 75 (1969), 370-374. MR 239599
  • 7. R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. 14 (1928), 85-88.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1969-12191-9

American Mathematical Society