Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

On smoothness of gentle perturbations


Author: Sue-Chin Lin
Journal: Bull. Amer. Math. Soc. 75 (1969), 445-449
DOI: https://doi.org/10.1090/S0002-9904-1969-12214-7
MathSciNet review: 0265982
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. K. O. Friedrichs, Perturbation of spectra in Hilbert space, Lectures in Applied Math., vol. III, Amer. Math. Soc., Providence, R.I., 1965. MR 182883
  • 2. T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1966), 258-279. MR 190801
  • 3. S.-C. Lin, Wave operators and similarity for generators of semi-groups in Banach spaces, Trans. Amer. Math. Soc. 139 (1969). MR 240667
  • 4. K. O. Friedrichs, Über die Spektralzerlegung eines Integraloperators, Math. Ann. 115 (1938), 249-272. MR 1513187
  • 5. K. O. Friedrichs, On the perturbation of continuous spectra, Comm. Pure Appl. Math. 4 (1948), 361-406. MR 29100
  • 6. P. A. Rejto, On gentle perturbations. I, II, Comm. Pure Appl. Math. 16 (1963), 279-303; 17 (1964), 257-292. MR 154138
  • 7. J. Schwartz, Some non-selfadjoint operators, Comm. Pure Appl. Math. 13 (1960), 609-639. MR 165372
  • 8. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1956.
  • 9. N. I. Mushelišvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, OGIZ, Moscow, 1946; 2nd ed., Fizmatgiz, Moscow, 1962; 3rd ed., "Nauka, " Moscow, 1967; English transl., Noordhoff, Groningen, 1953. MR 355494


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1969-12214-7

American Mathematical Society