A METHOD FOR COMPARING UNIVALENT FUNCTIONS

BY GERALD S. GOODMAN

Communicated by Dana Scott, September 6, 1968

1. The Loewner representation. Let \(f \) be any function in the class \(S \) of univalent functions on the unit disk bearing the normalization \(f(0) = 0, f'(0) = 1 \). Then it is known [1], [2], that \(f \) can be represented as

\[
f(z) = \lim_{t \to -\infty} e^t h(z, t),
\]

locally uniformly in \(z \) on \(|z| < 1 \), where \(h(z, \cdot) \) is the solution of Loewner's equation in its general form

\[
\frac{dh}{dt} = -hp(h, t) \quad \text{a.e. in } t \text{ on } [0, \infty)
\]

with the initial values

\[
h(z, 0) = z, \quad |z| < 1.
\]

Here \(p(\cdot, t) \) denotes a suitably chosen one-parameter family of holomorphic functions on the unit disk having positive real part and normalized so that \(p(0, t) = 1 \), whose dependence on \(t \) is Lebesgue measurable on \([0, \infty) \) whenever the first variable is held fixed, and the solution of (2) is understood in the Carathéodory sense [3].

Conversely, if \(p(\cdot, t) \) denotes any family of functions satisfying the above requirements, then the solution to the foregoing initial-value problem is known to exist and be holomorphic and univalent in \(z \) on the unit disk; the limit in (1) is then also known to exist and to determine a function in class \(S[1], [2] \).

More generally, one can consider the general solution \(h(z, s, t) \) of (2) for \(0 \leq s \leq t \) with the initial values

\[
h(z, s, s) = z, \quad |z| < 1.
\]

Then, in place of (1), one has

\[
\lim_{t \to -\infty} e^t h(z, s, t) = g(z, s)
\]

locally uniformly in \(z \) for \(|z| < 1 \), where \(e^{-g(z, s)} \) now belongs to \(S \) for all \(s \) in \([0, \infty) \). The function \(g \) is absolutely continuous in \(s \) and constitutes an integral of Equation (2), for it is easily shown that
2. Comparisons, local and global, in the class S. The identity (4) can be used as the basis for a local variational theory within the class S, by subjecting the unit disk in the h-plane to the infinitesimal transformations of the semigroup of bounded univalent functions, which Loewner has characterized [5]. This results in a variation in the function f for each fixed t, and, in e.g., the case of extremal problems for coefficients of functions in class S, it leads to a condition on the initial coefficients of the functions $\varphi(\cdot, t)$ that generate extremal mappings that amounts to the Pontryagin maximum principle [4], and is equivalent to Schiffer's characterization of the extremal functions as solutions of his quadratic differential equation [1], [6].

What we wish to report on now is the possibility of making global comparisons between the functions in class S, in contrast to the local comparisons mentioned above, by considering in place of (4) the function $G(z, t)$ defined by the equation

$$g(h(z, t), t) = G(z, t) \quad (|z| < 1, \quad 0 \leq t < \infty).$$

Here h is understood to be the solution to the initial-value problem made up of (2) and (3) when $\varphi(\cdot, t)$ is replaced by any other one-parameter family $\varphi(\cdot, t)$ that satisfies the same conditions as $\varphi(\cdot, t)$.

The function G belongs to class S for all t in $[0, \infty)$ and satisfies

$$G(z, 0) = f(z)$$

while (by arguments similar to those already used in [1], [2])

$$\lim_{t \to \infty} G(z, t) = \hat{f}(z),$$

locally uniformly in z on the unit disk, where \hat{f} is the function in S generated by h in the same manner as (1). Moreover, G is absolutely continuous in t, locally uniformly in z, and its t-derivative is given by

$$\partial_t G(z, t) = h(z, t) g'(h(z, t), t) \left[\varphi(h(z, t), t) - \widehat{\varphi}(h(z, t), t) \right] \text{ a.e.,}$$

where the $'$ denotes the derivative of g w.r.t. its first argument.

This procedure makes it possible to join a given function f in S with any other function \hat{f} in S along an absolutely continuous path in S, thereby generalizing the procedure of §1, which constitutes the special case of $f(z) = z$ in the present set-up.
3. Application to extremal problems for coefficients of functions in S. If we expand both sides of (8) in power series about the origin, we find that the nth coefficient of $\partial_t G$ is given by the expression

$$
\sum_{m=1}^{n-1} B_m(t) [\hat{p}_m(t) - \hat{p}_m(t)] \quad \text{a.e.,}
$$

where the p_m and \hat{p}_m are the mth coefficients of $p(\cdot, t)$ and $\hat{p}(\cdot, t)$, resp., and the B_m are certain combinations of the initial coefficients of the functions g and \hat{h} making them absolutely continuous as functions of t. Their derivatives involve the p_m and \hat{p}_m, and when $p(\cdot, t)$ coincides with $\hat{p}(\cdot, t)$ the resulting expressions reduce to a set of differential equations which are already known in the local theory [1], [6].

To establish the global extremality in S of the real part of the nth coefficient of a function f generated by (2), it would clearly be enough to show that the real part of (9) is nonpositive for a.e. t whatever the choice of the \hat{p}_m (so long as they come from functions admissible in the sense of §1), for then the real part of the nth coefficient of the function G would be nonincreasing. In view of (6) and (7), the global extremal property would thereby be verified.

In practice, it is desirable to restrict the competing functions $\hat{p}(\cdot, t)$ by placing a limitation on the range of their initial coefficients. In certain cases it can be shown by using the symmetries of the coefficient body S_n for functions in S that this limitation results in no loss of generality.

4. Illustration: the case $n = 3$. We shall verify the extremal property of the third coefficient of the Koebe function $f(z) = z/(1-z)^2$ in the class of functions $f(z) = z + \delta z^2 + \delta z^3 + \cdots$ in S which have $\Re \delta \geq 0$; an analogous result will hold for $f(z) = z/(1+z)^2$ when $\Re \delta \leq 0$. We have $p(h, t) = (1-h)/(1+h)$ and $g(h, t) = e^{ih}/(1-h)^2$; if we put $\hat{p}(h, t) = 1 + 2 \sum_{m=1}^{\infty} \hat{p}_m(t) h^m$ and $\hat{h}(z, t) = e^{-z} [z + \sum_{m=2}^{\infty} \hat{b}_m(t) z^m]$ then the real part of (9) for $n = 3$ becomes twice

$$
\text{Re} \left\{ B_1(t) [-1 - \hat{p}_3(t)] + B_2(t) [1 - \hat{p}_2(t)] \right\},
$$

where

$$
B_1(t) = 2\hat{b}_3(t) e^{-t} + 4e^{-2t}, \quad B_2(t) = e^{-2t}.
$$

We compute from (2)

$$
\frac{db_3(t)}{dt} = -2\hat{p}_1(t) e^{-t} \text{ a.e.},
$$

$$
\text{Re} \frac{db_3(t)}{dt} = \text{Re} \left\{ -4\hat{b}_3(t) \hat{p}_1(t) e^{-t} - 2\hat{p}_3(t) e^{-2t} \right\} \text{ a.e.,}
$$
and therefore

\[\frac{dB_1(t)}{dt} = -B_1(t) + 4e^{-st}[-1 - \dot{b}_1(t)] \quad \text{a.e.,} \]

while from (11) we deduce that \(B_1(0) = 4 \).

In order to make use of the assumption that \(\Re \alpha_2 \geq 0 \), we prove the following lemma.

Lemma. If \(\alpha_2 = \lim_{t \rightarrow \infty} b_2(t) \) has nonnegative real part, then the point \((\alpha_2, \Re \alpha_3) \) can be reached by a solution of (12) that starts at the origin when \(t = 0 \) and has \(\Re \dot{b}_1(t) \leq 0 \) a.e. in \([0, \infty)\).

Proof. In view of (12), this is the same as saying that \(\Re b_2(t) \) can be assumed to be monotone nondecreasing. Suppose it is not. Then there will be two values \(\xi < \eta \) of \(t \) such that \(\Re b_2(\xi) = \Re b_2(\eta) \). On the interval \([\xi, \eta]\) we can, if need be, replace \(\dot{p}(\cdot, t) \) by the functions (also of positive real part)

\[
q(h, t) = \frac{1}{2}[\dot{p}(h, t) + (\dot{p}(-h, t))^-] = 1 + 2i \Im \dot{b}_1(t)h + 2 \Re \dot{b}_1(t)h^2 + \cdots.
\]

This makes \(\Re b_2(t) \) constant on \([\xi, \eta]\) and leaves \(\Im b_2(t) \) unchanged, while in the equation for \(\Re d b_2(t)/dt \) the only change is that the term

\[-4 \Re b_2(t) \Re \dot{b}_1(t)e^{-t} \]

is now missing. But

\[
\int_{\xi}^{\eta} -4 \Re b_2(t) \Re \dot{b}_1(t)e^{-t} dt = [\Re b_2(\eta)]^2 - [\Re b_2(\xi)]^2 = 0,
\]

so that the missing term does not affect the value of \(\Re b_2(\eta) \). By the Rising Sun Lemma, there are at most a countable number of disjoint intervals in \([0, \infty)\) where this alteration of \(\dot{p}(\cdot, t) \) needs to be made, so that the altered \(\dot{p}(\cdot, t) \) remains measurable in \(t \) and yields a trajectory of (12) that satisfies the assertion of the lemma.

A similar reasoning, in which \(\dot{p}(h, t) \) is replaced by

\[
q(h, t) = \frac{1}{2}[\dot{p}(h, t) + (\dot{p}(-h, t))^-],
\]

shows that we can also assume that \(\Im \dot{b}_1(t) \) does not change sign on \([0, \infty)\). For \(\Re \dot{b}_1(t) \) and \(\Im \dot{b}_1(t) \) restricted in this way, Equation (13) and the initial condition \(B_1(0) = 4 \) imply that

\[\Im B_1(t) \Im \dot{b}_1(t) \leq 0 \quad \text{a.e.,} \]
and

$$4e^{-2t} \leq \text{Re} B_1(t) \leq 4e^{-t}$$

(since now $0 \leq 1 + \text{Re} \, \hat{p}_1(t) \leq 1$ a.e.).

To prove that (10) is nonpositive it is therefore enough to show that

$$-4[1 + \text{Re} \, \hat{p}_1(t)] \leq \text{Re} \, \hat{p}_2(t) - 1 \text{ a.e.}$$

We may restrict $\hat{p}_1(t)$ and $\hat{p}_2(t)$ to the form $\exp(i\theta(t))$, $\exp(2i\theta(t))$, resp., for $\theta(t)$ real-valued, either by appealing to Loewner's theory of slit mappings [5] or, even better, to the Carathéodory representation of $\hat{p}_1(t)$ and $\hat{p}_2(t)$ [1], [7]. Then (14) is equivalent to the inequality $-2[1 + \cos \theta(t)]^2 \leq 0$ a.e., and the monotonicity of the real part of the third coefficient of G is thereby proved.

This gives us Loewner's inequality $\text{Re} \, a_3 \leq 3$ when $\text{Re} \, a_2 \geq 0$, and at the same time shows that equality holds only when \hat{f} is the Koebe function $z/(1-z)^2$. (If one inspects the real part of the second coefficient of G, it also is seen to be monotone decreasing, so the same Koebe function is extremal there, too.)

By a variant of the foregoing procedure one can prove a number of other inequalities, among which is Jenkins' inequality

$$\text{Re} \left[e^{i\phi}(a_4 - a_2^2) - \lambda e^{i\phi}a_2 \right] \leq 1 + 3\lambda^2/8 + (\lambda^2 \log 4/\lambda)/4$$

for ϕ real and $0 < \lambda \leq 4$ [8].

References

AARHUS UNIVERSITY, AARHUS, DENMARK