Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Differentiability theorems for weak solutions of nonlinear elliptic differential equations


Author: Charles B. Morrey Jr.
Journal: Bull. Amer. Math. Soc. 75 (1969), 684-705
DOI: https://doi.org/10.1090/S0002-9904-1969-12247-0
MathSciNet review: 0246182
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for the solutions of elliptic differential equations satisfying general boundary values. II, Comm. Pure Appl. Math. 17 (1964), 35-92. MR 162050
  • 2. F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. 87 (1968), 321-391. MR 225243
  • 3. S. Bernstein, Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre, Math. Ann. 59 (1904), no. 1-2, 20–76 (French). MR 1511259, https://doi.org/10.1007/BF01444746
  • 4. S. Bernstein, Demonstration du théorème de M. Hilbert sur la nature analytique des solutions des équations du type elliptique sans l’emploi des séries normales, Math. Z. 28 (1928), no. 1, 330–348 (French). MR 1544961, https://doi.org/10.1007/BF01181167
  • 5. J. W. Calkin, Functions of several variables and absolute continuity. I, Duke Math. J. 6 (1940), 170-185. MR 1278
  • 6. L. Cesari, An existence theorem of the calculus of variations for integrals on parametric surfaces, Amer. J. Math. 74 (1952), 265-292. MR 50187
  • 7. Richard Courant, Plateau’s problem and Dirichlet’s principle, Ann. of Math. (2) 38 (1937), no. 3, 679–724. MR 1503362, https://doi.org/10.2307/1968610
  • 8. J. M. Danskin, On the existence of minimizing surfaces in parametric double integral problems in the calculus of variations, Riv. Mat. Univ. Parma 3 (1952), 43-63. MR 50186
  • 9. E. De Giorgi, Sulla differenziabilitá e analiticitá delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43. MR 93649
  • 10. Jesse Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931), no. 1, 263–321. MR 1501590, https://doi.org/10.1090/S0002-9947-1931-1501590-9
  • 11. G. C. Evans, Fundamental points of potential theory, Rice Inst. Pamphlets, no. 7, Rice Institute, Houston, Tex., 1920, pp. 252-359.
  • 12. H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458-520. MR 123260
  • 13. A. Friedman, On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial differential equations, J. Math. Mech. 7 (1958), 43-60. MR 118970
  • 14. M. Gevrey, Démonstration du théorème de Picard-Bernstein par la méthode des contours successifs; prolongement analytique, Bull. Sci. Math. (2) 50 (1926), 113-128.
  • 15. E. Giusti, Sulla regolaritá parziale delle soluzioni di sistemi ellittici quasilineari di ordine arbitrario, Preprint.
  • 16. E. Giusti and N. Miranda, Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni, Boll. Un. Mat. Ital. (4) 2 (1968), 1-8. MR 232265
  • 17. A. Haar, Über das Plateausche Problem, Math. Ann. 97 (1927), 127-158.
  • 18. D. Hilbert, Mathematische Probleme, Nachr. Acad. Wiss. Göttingen. Math.-Phys. K1. Math.-Phys.-Chem. Abt. 3 (1900).
  • 19. D. Hilbert, Über das Dirichletsche Prinzip, Jber. Deutsch. Math.-Verein. 8 (1900), 184-188.
  • 20. Eberhard Hopf, Zum analytischen Charakter der Lösungen regulärer zweidimensionaler Variationsprobleme, Math. Z. 30 (1929), no. 1, 404–413 (German). MR 1545070, https://doi.org/10.1007/BF01187779
  • 21. Eberhard Hopf, Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung, Math. Z. 34 (1932), no. 1, 194–233 (German). MR 1545250, https://doi.org/10.1007/BF01180586
  • 22. O. A. Ladyženskaya and N. Ural'ceva, Quasilinear elliptic equations and variational problems in several independent variables, Uspehi Mat. Nauk 16 (1961), no. 1 (97) 19-90 = Russian Math. Surveys 16 (1961), 17-91. MR 149075
  • 23. O. A. Ladyženskaya and N. Ural'ceva, On the smoothness of weak solutions of quasi-linear equations in several variables and of variational problems, Comm. Pure Appl. Math. 14 (1961), 481-495. MR 149076
  • 24. O. A. Ladyženskaya and N. Ural'ceva, Linear and quasi-linear equations of elliptic type, "Nauka", Moscow, 1964; English transl., Academic Press, New York, 1968. MR 211073
  • 25. E. E. Levi, Sulle equazioni lineari totalement ellittice alle derivate parziali, Rend. Circ. Mat. Palermo 24 (1907), 275-317.
  • 26. Hans Lewy, Neuer Beweis des analytischen Charakters der Lösungen elliptischer Differentialgleichungen, Math. Ann. 101 (1929), no. 1, 609–619 (German). MR 1512557, https://doi.org/10.1007/BF01454865
  • 27. L. Lichtenstein, Über den analytischen Charakter der Lösungen zweidimensionaler Variationsprobleme, Bull. Acad. Sci. Cracovie, Cl. Sci. Math. Nat. A, (1912), 915-941.
  • 28. L. Lichtenstein, Zur Theorie der konformen Abbildung. Konforme Abbildung nichtanalytischer singularitätenfrei Flächenstücke auf ebene Gebiete, Bull. Acad. Sci. Cracovie, Cl. Sci. Mat. Nat. A, (1916), 192-217.
  • 29. E. J. McShane, Parametrizations of saddle surfaces with applications to the problem of Plateau, Trans. Amer. Math. Soc. 35 (1934), 718-733.
  • 30. Charles B. Morrey Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166. MR 1501936, https://doi.org/10.1090/S0002-9947-1938-1501936-8
  • 31. C. B. Morrey, Jr., Functions of several variables and absolute continuity. II, Duke Math. J. 6 (1940), 187-215. MR 1279
  • 32. C. B. Morrey, Jr., Existence and differentiability theorems for the solutions of variational problems for multiple integrals, Bull. Amer. Math. Soc. 46 (1940), 439-458. MR 2473
  • 33. C. B. Morrey, Jr., Multiple integral problems in the calculus of variations and related topics, Univ. California Publ. Math. 1 (1943), 1-130. MR 11537
  • 34. C. B. Morrey, Jr., The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49 (1948), 807-851. MR 27137
  • 35. C. B. Morrey, Jr., On the analyticity of the solutions of non-linear elliptic systems of partial differential equations. II, Amer. J. Math. 80 (1958), 219-234. MR 107081
  • 36. C. B. Morrey, Jr., Extensions and applications of the De Giorgi-Nash results, Proc. Sympos. Pure Math., vol. IV, Amer. Math. Soc., Providence, R. I., 1961. MR 180890
  • 37. C. B. Morrey, Jr., Existence and differentiability theorems for variational problems for multiple integrals. Partial differential equations and continuum mechanics, Univ. of Wisconsin Press, Madison, 1961, pp. 241-270. MR 121690
  • 38. C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Die Grundlehren der Math. Wissenschaften, Band 130, Springer-Verlag, New York, 1966. MR 202511
  • 39. C. B. Morrey, Jr., Partial regularity results for non-linear elliptic systems, J. Math. Mech. 17 (1968), 649-670. MR 237947
  • 40. C. B. Morrey, Jr. and L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations, Comm. Pure Appl. Math. 10 (1957), 271-290. MR 89334
  • 41. J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457-468. MR 170091
  • 42. J. Nash, Continuity of the solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954. MR 100158
  • 43. J. Neças, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. MR 227584
  • 44. J. Neças, Sur la régularité des solutions variationelles des équations elliptiques nonlinéaires d'ordre 2k en deux dimensions, Ann. Scuola Norm. Sup. Pisa 21 (1967), 427-457. MR 226467
  • 45. L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. 8 (1955), 648-674. MR 75415
  • 46. R. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-172. MR 158411
  • 47. I. Petrovskiĭ, Sur l'analyticité des solutions des systèmes d'équations différentielles, Mat. Sb. 5 (47) (1939), 3-70.
  • 48. Tibor Radó, Das Hilbertsche Theorem über den analytischen Charakter der Lösungen der partiellen Differentialgleichungen zweiter Ordnung, Math. Z. 25 (1926), no. 1, 514–589 (German). MR 1544826, https://doi.org/10.1007/BF01283854
  • 49. Tibor Radó, Über zweidimensionale reguläre Variationsprobleme der Form ∫∫𝐹(𝑝,𝑞)𝑑𝑥𝑑𝑦=Minimum, Math. Ann. 101 (1929), no. 1, 620–632 (German). MR 1512558, https://doi.org/10.1007/BF01454866
  • 50. Tibor Radó, The problem of the least area and the problem of Plateau, Math. Z. 32 (1930), no. 1, 763–796. MR 1545197, https://doi.org/10.1007/BF01194665
  • 51. E. R. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92. MR 114145
  • 52. E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. (2) 80 (1964), 1-14. MR 171197
  • 53. E. R. Reifenberg, On the analyticity of minimal surfaces, Ann. of Math. (2) 80 (1964), 15-21. MR 171198
  • 54. A. G. Sigalov, Two-dimensional problems of the calculus of variations, Uspehi Mat. Nauk 6 (1951), no. 2 (42), 16-101; English transl., Amer. Math. Soc. Transl. (1) 6 (1962), 27-146. MR 43400
  • 55. S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. 4 (46) (1938), 471-497; English transl., Amer. Math. Soc. Transl. (2) 34 (1963), 39-68.
  • 56. L. Tonelli, Sui massimi e minimi assoluti del calcolo delle variazione, Rend. Circ. Mat. Palermo 32 (1911), 297-337.
  • 57. L. Tonelli, Sur caso regolare nel calcolo delle variazioni, Rend. Circ. Mat. Palermo 35 (1913), 49-73.
  • 58. L. Tonelli, Sur une méthode directe du calcul des variations, Rend. Circ. Mat. Palermo 39 (1915), 233-264.
  • 59. L. Tonelli, La semicontinuitá nel calcolo delle variazioni, Rend. Circ. Mat. Palermo 44 (1920), 167-249.
  • 60. L. Tonelli, Fondamenti del calcolo delle variazioni. I, II, III, Zanichelli, Bologna
  • 61. Leonida Tonelli, Sur la semi-continuité des intégrales doubles du calcul des variations, Acta Math. 53 (1929), no. 1, 325–346 (French). MR 1555297, https://doi.org/10.1007/BF02547573
  • 62. Leonida Tonelli, L’estremo assoluto degli integrali doppi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 2 (1933), no. 1, 89–130 (Italian). MR 1556696


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1969-12247-0

American Mathematical Society