Infinite-dimensional manifolds are open subsets of Hilbert space

Author:
David W. Henderson

Journal:
Bull. Amer. Math. Soc. **75** (1969), 759-762

DOI:
https://doi.org/10.1090/S0002-9904-1969-12276-7

MathSciNet review:
0247634

Full-text PDF

References | Additional Information

**1.**R. D. Anderson,*Hilbert space is homeomorphic to the countable product of real lines*, Bull. Amer. Math. Soc. 72 (1966), 515-519. MR**190888****2.**R. D. Anderson,*On topological infinite deficiency*, Michigan Math. J. 14 (1967), 365-383. MR**214041****3.**R. D. Anderson and R. H. Bing,*A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines*, Bull. Amer. Math. Soc. 74 (1968), 771-792. MR**230284****4.**R. D. Anderson and R. Schori,*Factors of infinite-dimensional manifolds*, Trans. Amer. Math. Soc. (to appear). MR**246327****5.**Karol Borsuk,*Theory of retracts*, PWN, Warsaw, 1967. MR**216473****6.**J. Eells, Jr. and K. D. Elworthy,*On the differential topology of Hilbertian manifolds*, Proc. Summer Institute on Global Analysis, Berkeley, Calif., 1968.**7.**D. W. Henderson,*Open subsets of Hilbert space*, Compositio Math. (to appear). MR**251748****8.**V. L. Klee,*Convex bodies and periodic homeomorphism in Hilbert space*, Trans. Amer. Math. Soc. 74 (1953), 10-43. MR**54850****9.**N. H. Kuiper and D. Burghelea,*Hilbert manifolds*(to appear). MR**253374****10.**E. Michael,*Local properties of topological spaces*, Duke Math. J. 21 (1954), 163-172. MR**62424****11.**J. Milnor,*Microbundles*. Part I, Topology 3 (1964), 53-80. MR**161346**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1969-12276-7