A family of almost periodic functions on the reals, \mathbb{R}, to complex n-space, C^n, is compact in the uniform topology if and only if it is (a) closed, (b) uniformly bounded, (c) uniformly equicontinuous, and (d) uniformly almost periodic. This is a result of Bochner [1]. Of the above criteria, part (d) seems to be the most difficult to verify. We offer two results in this direction.

Recall that the family A is uniformly almost periodic if for each $\epsilon > 0$, the set $T(A, \epsilon) = \{ \tau: |f(x+\tau)-f(\tau)| < \epsilon$ for all $x \in \mathbb{R} \}$ is relatively dense. For A a singleton, this is Bohr's definition of an almost periodic function. Let $\exp(\phi)$ be the set of real numbers λ, such that $\lim_{T \to \infty} (1/T) \int_{0}^{T} \phi(x)e^{-\lambda x} dx = 0$. If A is a compact family then $\exp(A) = \cap_{\phi \in A} \exp(\phi)$ is countable. Hence we will consider sets of the following form. Let $C(M, A) = \{ \phi | \phi \text{ is almost periodic}, \|\phi\| \leq M, \exp(\phi) \subset \Delta \}$ where M is a fixed real number, $\|\cdot\|$ is the supremum norm, and Δ is a given countable set of reals.

Theorem 1. If Δ has no finite limit point, then any uniformly equicontinuous family in $C(M, \Delta)$ has compact closure.

Theorem 2. If $A \subset C(M, \Delta)$ is the family that is uniformly Lipschitz, i.e.: there is a $K > 0$, such that $f \in A$ if and only if $|f(t) - f(s)| \leq K|t - s|$ for all t and s, then A has compact closure if and only if Δ has no finite limit point.

In fact, if Δ has no finite limit point, then A is a convex compact set having the fixed point property.

If Δ has no finite limit point, then let $\Delta = \{ \lambda_n \}$ with $|\lambda_1| \leq |\lambda_2| \leq \cdots$. By a result of Bredhina [2], there exist polynomials $\sigma_n(f, x) = \sum_{k=-1}^{n} a_k(f)e^{\lambda_k x}$ such that $\|f - \sigma_n(f)\| \leq 10 \omega_f(1/|\lambda_n|)$ where $\omega_f(x) = \sup\{ |f(y) - f(z)| : |y - z| \leq x \}$. For any $\epsilon > 0$, the polynomials $\{\sigma_n(f)\}_{f \in A}$ are an ϵ-net for some n_ϵ. This collection is uniformly almost periodic; hence so is A.

If the family A is Lipschitz and Δ has a finite limit point, one constructs a closed ball of an infinite dimensional space in A. These are not compact. One uses the result of Bochner [3] to the effect that if $\exp(\phi)$ is a bounded set, then ϕ' exists and $\|\phi'\| \leq T\|\phi\|$ where T is a
bound for exp(\phi). That is, for such functions, the Lipschitz condition is automatically satisfied.

Details of the above outline appear in [4] where an application of the fixed point property is also given.

REFERENCES

IOWA STATE UNIVERSITY, AMES, IOWA 50010