THE SPECTRUM OF NONCOMPACT G/Γ AND THE COHOMOLOGY OF ARITHMETIC GROUPS

BY HOWARD GARLAND

Communicated by Louis Auslander, February 13, 1969

Introduction. The purpose of this note is to announce a theorem in the representation theory of semisimple groups (Theorem 1.2, below). This theorem implies that certain spaces of square summable harmonic forms on noncompact locally symmetric spaces, associated with \mathcal{Q}-rank one arithmetic groups, are finite dimensional. Assertion (1.3) then gives information about the boundary behavior at ∞ of such forms. Combining (1.3) with the computations in [4] and Raghunathan's square summability criterion in [6], we obtain upper bounds for some betti numbers of locally symmetric spaces associated with \mathcal{Q}-rank one arithmetic groups (these spaces are noncompact, but have the homotopy type of a finite simplicial complex (see [7])). In some cases we obtain vanishing theorems for the first and second betti numbers. For the first betti number, such a vanishing theorem was obtained in greater generality by D. A. Kazdan (see [3]) by a different method. We remark that Raghunathan's square summability criterion has been generalized to arbitrary \mathcal{Q}-rank in [1]. Therefore an extension of Theorem 1.2 to arbitrary \mathcal{Q}-rank would yield a corresponding extension of our present results on cohomology. A detailed proof of Theorem 1.2 and a full discussion of the application of this theorem to the cohomology of arithmetic groups will appear elsewhere. I wish to express my thanks to S. T. Kuroda and M. S. Raghunathan for stimulating discussions.

We now introduce some notation. Let \mathcal{Q}, \mathbb{R}, and \mathbb{C} denote the fields of rational, real, and complex numbers, respectively, and let \mathbb{Z} denote the ring of rational integers. Let G denote a connected, linear, semisimple, algebraic group which is defined and simple over \mathcal{Q}. For a subring $A \subseteq \mathbb{C}$, let G_A denote the A-rational points of G. However, when $A = \mathbb{R}$, we let $G = G_\mathbb{R}$. We let \mathfrak{g} denote the Lie algebra of G, $\mathfrak{g}_\mathbb{C}$ the complexification of \mathfrak{g}, and \mathfrak{g} the universal enveloping algebra of $\mathfrak{g}_\mathbb{C}$. We make the convention that \mathfrak{g} is the space of right invariant vector fields on G. Hence \mathfrak{g} is the space of right invariant differential operators on G. We denote the center of \mathfrak{g} by \mathfrak{z}. As is well known, \mathfrak{z} may be identified with the space of (adjoint-)invariant polynomials.

1 The author was partially supported by NSF Grant GP-7131 and a Yale University Junior Faculty Fellowship.
on \mathfrak{g}_C. In particular, there is a unique element $\Delta_\theta \in \mathcal{B}$, called the Casimir operator, which corresponds to the Killing form under this identification.

Let $\Gamma \subset G$ be an arithmetic subgroup. We fix a Haar measure $\text{d}v$ on G, and note that $\text{d}v$ induces a G-invariant measure on G/Γ (which we again denote by $\text{d}v$). We let $L_2 = L_2(G/\Gamma)$ denote the space of \mathbb{C}^∞, \mathbb{C}-valued functions f on G/Γ, such that

$$\int_{G/\Gamma} f(x)f^-(x)\text{d}v(x) < \infty$$

(where $-\cdots$ denotes complex conjugation).

We fix a maximal \mathfrak{Q}-split torus $\mathfrak{S}_G \subset \mathfrak{g}_G$, and let \mathfrak{A} denote the topological identity component of the \mathfrak{R}-rational points of \mathfrak{S}_G. We let $Z(\mathfrak{Q}_G)$ denote the centralizer of \mathfrak{Q}_G in G, and we let $X(\mathfrak{Q}_G)$ denote the \mathfrak{Q}-rational characters of $Z(\mathfrak{Q}_G)$. We then define $M \subset Z(\mathfrak{Q}_G)$ by

$$M = \bigcap_{\chi \in \chi(\mathfrak{Q}_G)} \text{kernel } \chi^2.$$

$Z(\mathfrak{Q}_G)$ is known to have an almost direct product decomposition $Z(\mathfrak{Q}_G) = M \mathfrak{Q}_G$, and $Z(\mathfrak{Q}_A)$, the centralizer of \mathfrak{Q}_A in G, a direct product decomposition

$$Z(\mathfrak{Q}_A) = M \mathfrak{Q}_A,$$

where M denotes the \mathfrak{R}-rational points of M.

We now fix a maximal compact subgroup $K \subset G$, such that K and \mathfrak{Q}_A have Lie algebras which are orthogonal with respect to the Cartan-Killing form of \mathfrak{g}. Let V be a finite dimensional, complex vector space with a positive definite, Hermitian inner product. Then let $\sigma : K \rightarrow \text{Aut } V$ be a representation of K which is unitary with respect to the given inner product. We let d_σ denote the complex dimension of V and we let ξ_σ denote the character of σ.

We then define a subspace L'_2 of L_2, by

$$(0.1) \quad L'_2 = \left\{ f \in L_2 \mid d_\sigma \int_{\mathcal{K}} \xi_\sigma(k)f(k^{-1}x)dk = f(x), \quad x \in G/\Gamma \right\},$$

where dk denotes Haar measure on \mathcal{K}, normalized so that

$$\int_{\mathcal{K}} dk = 1.$$

We remark that functions on G/Γ may be identified with Γ-invariant functions on G. We will make this identification whenever convenient.
and we will denote corresponding functions on G and G/T by the same letter.

1. **Statement of the main theorem.** For $v \in \mathcal{C}$, let

$$\mathcal{G}^* = \{ f \in L_2 | \Delta f = vf \}.$$

Lemma 1.1. Assume G has Q-rank one; i.e. $\dim Q = 1$. Then there exists a real number J so that if $\mathcal{G}^* \neq \{ 0 \}$, then v is real and $v < J$.

Theorem 1.2 (Main theorem). Assume G has Q-rank one. For $c \in \mathbb{R}$, let

$$\mathfrak{F}^* = \oplus_{c > J} \mathcal{G}^*.$$ Then \mathfrak{F}^*_c is finite dimensional. Moreover, if $v \in \mathbb{R}$, $f \in \mathcal{G}^*$ and $\Lambda \in \mathfrak{G}$, we have $\Delta f \in L_2$. If $\nu_1, \nu_2 \in \mathbb{R}$, $f_1 \in \mathcal{G}^*$, and $\Lambda_1, \Lambda_2 \in \mathfrak{G}$, then for $X \in \mathfrak{g}$, where we have

$$\int_{\mathfrak{g}/\mathfrak{t}} (X\Delta f_1)(\Delta_2 f_2) dv = -\int_{\mathfrak{g}/\mathfrak{t}} (\Delta_1 f_1)(X\Delta_2 f_2) dv.$$

The following is an immediate consequence of Lemma 1.1 and Theorem 1.2.

Corollary 1.4. The eigenvalues of Δ_Q in L_2^* have no finite point of accumulation.³

2. **An indication of the proof of the main theorem.** In this section we assume G has Q-rank one. Let $P \subset G$ be a minimal Q-parabolic subgroup and let P denote the R-rational points of P. We let U denote the unipotent radical of P and U the R-rational points of U. After conjugating P by a suitable point in G, we can assume

$$P = M_Q SU, \quad P = M_Q A U.$$ We let \mathcal{Z} denote a set of double coset representatives for $P_Q \backslash G_Q / \Gamma$, and we let

$$\Gamma_\infty = \bigcap_{q \in \mathcal{Z}} q \Gamma q^{-1} \cap U.$$ U/Γ_∞ is compact, and we can therefore fix a Haar measure du on U so that $\int_{U/\Gamma_\infty} du = 1$. For $f \in L_2$ and $g \in \mathcal{Z}$, we define f_g by $f_g(x) = f(xg)$, $x \in G$ (if here being identified with a right Γ invariant func-

³ At first we proved \mathcal{G}^* finite dimensional. We thank R. P. Langlands for pointing out that our argument also gives the finite dimensionality of \mathfrak{F}^*_c, and hence Corollary 1.4.
tion on G). We then define f_q' by

$$f_q'(x) = \int_{U/F} f_q(xu)du, \quad x \in G.$$

From now on, we assume $f \in C_G^\infty$ for some $\nu \in \mathbb{R}$ and some σ. In particular, $f \in L^2_\nu$ and this means that f is a component of a V-valued, left K equivariant function. The same is then true of f_q'. Moreover, since G has the generalized Iwasawa decomposition

$$G = KM_QA U,$$

and since f_q' is also right U invariant, we see that f_q' is uniquely determined by its restriction to M_QA. We denote this restriction again by f_q'.

Recall that M_QA is a direct product. We can therefore regard f_q' as a function of two variables (the M-variable and the Q_A-variable). A central step in proving Lemma 1.1 and Theorem 1.2 is to determine the nature of f_q' as a function of the Q_A-variable. For we can then apply the theory of cusp forms (see [2, Chapter 1]) together with arguments from the theory of elliptic operators (see [5]) to obtain the desired results. We will describe f_q' as a function in the Q_A-variable presently, but in preparation, we introduce some notation.

We let $\pi: MU \to M$ denote the natural projection. We let

$$\Gamma_P = \bigcap_{q \in \mathbb{Z}} (q\Gamma q^{-1} \cap MU), \quad \Gamma_M = \pi(\Gamma_P).$$

For each $a \in Q_A$, we set $f_{q,a}^\prime(m) = f_{q}^\prime(ma)$, $m \in M$. $f_{q,a}^\prime$ is then a right Γ_M-invariant function on M. Moreover, Γ_M is a discrete subgroup of M and M/Γ_M is compact. Hence $f_{q,a}^\prime$ may be regarded as a function on the compact quotient space M/Γ_M. We let $K_M = \pi(K \cap MU)$ and we define $\sigma_M: K_M \to \text{Aut } V$, by

$$\sigma_M(\pi(k)) = \sigma(k), \quad k \in K \cap MU.$$

We then fix a Haar measure dm on M, and define $L_2(M/\Gamma_M)$ and $L^2(H_M(M/\Gamma_M))$ just as we did $L_2(G/\Gamma)$ and $L^2(H_G(G/\Gamma))$, respectively. We note that $f_{q,a}^\prime \in L_2^M(M/\Gamma_M)$, for all $a \in Q_A$. The pair (Q_A, U) determines an order on the roots of Q_A. We then let α denote the unique simple root and Qg one half the sum of the positive roots. The behaviour of f_q' as a function in a, $a \in Q_A$, is then given by

Lemma 2.1. There is an orthonormal basis $\phi_1, \ldots, \phi_i, \ldots$ of $L^2_M(M/\Gamma_M)$, a sequence of real numbers m_1, \ldots, m_i, \ldots such that
Limit $t \to \infty$ $m_i = \infty$, and a positive number λ depending only on q, so that if $v \in \mathbb{C}$ and $G_v \neq \{0\}$, then $v \in \mathbb{R}$ and there is a finite subsequence $\phi_{i_1}, \ldots, \phi_{i_N}$ with $m_{i_j} + \nu > 0$, $j = 1, \ldots, N$, so that if $\kappa = \lambda^{-1}(m_{i_j} + \nu)^{1/2}$ (here we take the positive square root), then for all $f \in \mathfrak{B}$, $q \in \mathbb{Z}$, we can find $b_1, \ldots, b_n \in \mathbb{C}$, so that

$$\exp(\tilde{g}(\log a))\phi_i(m^*a) = \sum_{j=1}^N b_j \exp(\kappa \alpha(\log a))\phi_i(m), \quad a \in \mathfrak{g}A, \ m \in M.$$

Here $\log a$ is the unique element in the Lie algebra of $\mathfrak{g}A$ which exponentiates to a.

Remark. The ϕ_i and m_i are respectively the eigenfunctions and corresponding eigenvalues of a certain (essentially) elliptic invariant differential operator on $L^2(M/T)$ associated with $\Delta_\mathfrak{g}$.

Bibliography

Yale University, New Haven, Connecticut 06520