THREE-MANIFOLDS WITH FUNDAMENTAL GROUP A FREE PRODUCT

BY WILLIAM JACO

Communicated by William Browder, April 7, 1969

1. Introduction. The purpose of this paper is to announce some results concerning the structure of a compact 3-manifold M (possibly with boundary) where $\pi_1(M)$ is a free product. Related questions for M closed have been considered in [1], [2], [4], [6], [8].

We use the term map to mean continuous function. If M is a manifold, we use $\text{Bd} M$ and $\text{Int} M$ to stand for the boundary and interior of M, respectively. The disk D is said to be properly embedded in the 3-manifold M if

$$D \cap \text{Bd} M = \text{Bd} D.$$

The compact 3-manifold H_n is called a handlebody of genus n if H_n is the regular neighborhood of a finite connected graph having Euler characteristic $1-n$.

The combinatorial terminology is consistent with that of [9]. The terms in group theory may be found in [3]. Furthermore, all maps and spaces are assumed to be in the PL category.

2. Bounded Kneser Conjecture.

THEOREM 2.1. Let M denote a compact 3-manifold with nonvoid boundary where $\pi_1(M) \cong A \ast B$, a free product. Then there is a compact 3-manifold M' with nonvoid boundary so that

(i) M' has the same homotopy type as M, and

(ii) there is a disk D' properly embedded in M' where $M' - D'$ consists of two components M_1 and M_2 with $\pi_1(M_1) \cong A$ and $\pi_1(M_2) \cong B$.

OUTLINE OF PROOF. Let K_A and K_B denote CW-complexes with $\pi_1(K_A) = G$ and $\pi_n(K_A) = 0$, $n \geq 2$, $G = A$, B. Let p denote a point not in $K_A \cup K_B$. Define $\overline{K_A}$ and $\overline{K_B}$ as the mapping cylinders of maps from p into K_A and K_B, respectively. Let K denote the CW-complex obtained by identifying the copy of p in $\overline{K_A}$ with the copy of p in $\overline{K_B}$. It follows that $\pi_1(K) = A \ast B$ and $\pi_n(K) = 0$, $n \geq 2$ (see [1, p. 669]).

There is a simplicial map f of M into K (K may be chosen so that any finite collection of cells in K has a simplicial subdivision) so that f_* is an isomorphism of $\pi_1(M)$ onto $\pi_1(K)$.

LEMMA A. Let M, K, f, p be as above. There is a map $g : M \to K$ so that

(i) g is homotopic to f relative to a base point of $\pi_1(M)$, and

972
(ii) each component of $g^{-1}(p)$ is a disk properly embedded in M.

If $g^{-1}(p)$ has only one component, then we are finished. Otherwise, we continue in the following way.

For M, K, and p as above, the map $g: M\to K$ is said to be reduced if each component of $g^{-1}(p)$ is a disk properly embedded in M. If g is reduced, the complexity of g, $\#(g)$, is the number of components of $g^{-1}(p)$. Using this notation we wish to find a compact 3-manifold M' having the same homotopy type as M and a reduced map $g': M'\to K$ with $\#(g') = 1$ and g' an isomorphism.

We are able to find a handlebody, H_n, of genus n in M and 3-cells B_1, \cdots, B_k so that for each $i = 1, \cdots, k$,

$$B_i \cap H_n \subset \text{Bd} B_i \cap \text{Bd} H_n = A_i$$

is an annulus, $B_i \cap g^{-1}(p) = \emptyset$, $B_i \cap B_j = \emptyset$, $i \neq j$, and $M = H_n \cup B_1 \cup \cdots \cup B_k$. Under these conditions we say (H_n, B_1, \cdots, B_k) is a Heegaard splitting for M relative to g.

A path γ in $\text{Bd} H_n$ is called a binding tie (see [7]) if $\gamma \cap g^{-1}(p)$ consists of the endpoints of γ, the endpoints of γ are in distinct components of $g^{-1}(p)$, and the loop $g(\gamma)$ based at p is contractible in K (actually, since $g(\gamma) \subset \overline{K}_1$ or \overline{K}_2, $g(\gamma)$ is contractible in \overline{K}_1 or \overline{K}_2).

Lemma B. If M, g, p are as in Lemma A and $\#(g) > 1$, then there is a Heegaard splitting (H_n, B_1, \cdots, B_k) of M relative to g and a nonsingular (i.e. an arc) binding tie in $\text{Bd} H_n$.

We are now able to obtain a compact 3-manifold M' having the same homotopy type as M and a map

$$g': M' \to K$$

so that

(i) g' is an isomorphism of $\pi_1(M')$ onto $\pi_1(K)$,
(ii) g' is reduced,
(iii) $\#(g') = \#(g)$, and
(iv) there is a Heegaard splitting $(H_n', B_1', \cdots, B_k')$ of M' relative to g' and a nonsingular binding tie γ' in $\text{Bd} H_n'$ so that $\gamma' \cap B_i' = \emptyset$ for each $i = 1, \cdots, k$.

Lemma C. If M', b', γ', p are as above, then there is a map $h': M' \to K$ so that

(i) h' is homotopic to g' relative to a base point for $\pi_1(M')$,
(ii) h' is reduced, and
(iii) $\#(h') < \#(g')$.

The following example shows that we cannot replace "homotopy type" by "homeomorphic" in part (i) of the previous theorem.

Let

\[N = S^1 \times S^1 \times I \]

where \(S^1 \) is the 1-sphere and \(I \) the unit interval. Let

\[T_0 = S^1 \times S^1 \times \{0\} \quad \text{and} \quad T_1 = S^1 \times S^1 \times \{1\}. \]

Choose disks \(D_0 \subseteq T_0 \) and \(D_1 \subseteq T_1 \). Let \(B \) denote the unit 3-cell. Choose disks \(D'_0 \) and \(D'_1 \) in \(\text{Bd} \, B \) so that \(D'_0 \cap D'_1 = \emptyset \). Let \(h \) denote an orientation reversing homeomorphism from the pair \((D'_0, D'_1)\) to \((D_0, D_1)\).

Define

\[M = N \cup B, \]

the 3-manifold obtained from the disjoint union of \(N \) and \(B \) by identifying \(x \) with \(h(x), x \in D'_0 \cup D'_1 \).

It is an elementary exercise using Van Kampen's Theorem to see that

\[\pi_1(M) \approx (Z \times Z) * Z \]

where \(Z \) is the infinite cyclic group. The 3-manifold \(M \) is irreducible; i.e. \(M \) is irreducible if each polyhedral two-sphere in \(M \) bounds a 3-cell in \(M \). Using this fact we obtain

Proposition 2.2. If \(M \) is the 3-manifold constructed above and \(D \) is a disk properly embedded in \(M \) so that \(M - D \) consists of two components \(M_1 \) and \(M_2 \), then the closure of either \(M_1 \) or \(M_2 \) is a 3-cell.

Corollary 2.3. If \(M \) is a compact 3-manifold and

\[\pi_1(M) \approx A * B, \]

then there are compact 3-manifolds \(M_1 \) and \(M_2 \) so that \(\pi_1(M_1) = A \) and \(\pi_1(M_2) = B \).

3. Splitting along a disk.

Theorem 3.1. Let \(M \) denote a compact 3-manifold with nonvoid, connected boundary. Suppose that each disk \(D \) properly embedded in \(M \) separates \(M \). If

\[\pi_1(M) \approx A * B, \]

then there is a disk \(D \) properly embedded in \(M \) so that \(M - D \) consists of two components \(M_1 \) and \(M_2 \) with \(\pi_1(M_1) = A \) and \(\pi_1(M_2) = B \).
OUTLINE OF PROOF. We proceed much along the same lines as in Theorem 2.1 through Lemma B of that theorem. Hence, borrowing from the notation of Theorem 2.1, suppose \(g: M \to K \) is a map so that \(g_* \) is an isomorphism and \(g \) is reduced. We assume \(g^{-1}(p) \) has more than one component (if \(g^{-1}(p) \) has only one component, then we are finished).

Let \((H_n, B_1, \ldots, B_k) \) be a Heegaard splitting for \(M \) relative to \(g \). Suppose \(\gamma \) is a nonsingular binding-tie in \(\text{Bd} \ H_n \).

Lemma D. Using the above notation, there is a map \(h: M \to K \) so that

(i) \(h \) is homotopic to \(g \) relative to a base point for \(\pi_1(M) \),
(ii) \(h \) is reduced, and
(iii) \(\#(h) < \#(g) \).

Theorem 3.2. Let \(M \) denote a compact 3-manifold with nonvoid, connected boundary. If \(\pi_1(M) \cong \mathbb{Z} * G \), then there is a disk \(D \) properly embedded in \(M \) so that \(M - D \) is connected and \(\pi_1(M - D) \cong G \).

Proof. It is sufficient to show that there is a disk \(D \) properly embedded in \(M \) so that \(M - D \) is connected (see the remarks on p. 27, vol. II of [3]).

If each disk properly embedded in \(M \) separates \(M \), then by Theorem 3.1 there is a disk \(D \) properly embedded in \(M \) so that \(M - D \) has two components \(M_1 \) and \(M_2 \) with \(\pi_1(M_1) \cong \mathbb{Z} \) and \(\pi_1(M_2) \cong G \). However, we have

Lemma E. If \(M_1 \) is a compact 3-manifold with nonvoid boundary and \(\pi_1(M_1) \cong \mathbb{Z} \), then there is a disk \(D \) properly embedded in \(M_1 \) so that \(M_1 - D \) is connected.

We conclude in any case that the desired disk \(D \) may be obtained in \(M \).

A group \(G \) is said to be freely reduced if whenever \(G \cong G_1 * G_2 \) then neither \(G_1 \) nor \(G_2 \) is a free group.

Theorem 3.3. Let \(M \) denote a compact 3-manifold with nonvoid, connected boundary. Suppose \(\pi_1(M) \cong A * B \), a free product, and \(\pi_1(M) \) is freely reduced. Then there is a disk \(D \) properly embedded in \(M \) so that \(M - D \) consists of two components \(M_1 \) and \(M_2 \) with \(\pi_1(M_1) \cong A \) and \(\pi_1(M_2) \cong B \).

4. **Another proof of Kneser's Conjecture.** For an account of Kneser's Conjecture see [5] especially §§3, 12, 15, 17, and 20. Also, see [1], [2], [6]. Whitehead [8] was the first to obtain a satisfactory proof of Kneser's Conjecture.
The group \(G \) is said to be \textit{indecomposable} if whenever \(G \approx G_1 * G_2 \), then either \(G_1 \) or \(G_2 \) is the trivial group. If
\[
G \approx A_1 * \cdots * A_n
\]
where each \(A_i \) is indecomposable we call \(A_1 * \cdots * A_n \) a \textit{decomposition} of \(G \). Each finitely generated group has a decomposition which is unique up to order and isomorphism [3].

Kneser Conjecture. Let \(M \) denote a closed 3-manifold. Then
\[
\pi_1(M) \approx A * B,
\]
a free product, iff there is a polyhedral 2-sphere \(S \) in \(M \) so that \(M - S \) consists of two components \(M_1 \) and \(M_2 \) with \(\pi_1(M_1) \approx A \) and \(\pi_1(M_2) \approx B \).

We obtain Kneser's Conjecture as a corollary to

Theorem 4.1. Suppose \(M \) is a closed 3-manifold and
\[
\pi_1(M) \approx A_0 * A_1 * \cdots * A_k
\]
is a decomposition of \(\pi_1(M) \). Then there is a mutually exclusive collection of polyhedral 2-spheres \(S_1, \cdots, S_k \) in \(M \) so that \(M - U_i S_i \) consists of \(k + 1 \) components \(N_0, \cdots, N_k \) with \(\pi_1(N_i) \approx A_i \) for \(0 \leq i \leq k \).

Proof. We proceed by induction on the integer \(k \) where \(k \geq 1 \). The general situation is no more difficult than the situation \(k = 1 \).

Let \(C \) denote a 3-cell in \(M \). Let \(M' = M - \text{Int} \, C \). Then \(\pi_1(M') \approx \pi_1(M) \). There are two cases to consider.

\textit{Case 1.} \(\pi_1(M) \) is not freely reduced.

We choose the notation in this case so that \(A_0 \approx Z \), the infinite cyclic group. Applying Theorem 3.2 we find a disk \(D \) properly embedded in \(M' \) so that \(M' - D \) is connected. Hence, we are able to find a 2-sphere \(S \) in \(M \) so that \(D \subset S \) and \(M - S \) is connected. We have

Lemma F. Let \(M \) denote a closed 3-manifold and suppose \(S \) is a 2-sphere in \(M \) so that \(M - S \) is connected. Then there is a 2-sphere \(S_1 \) in \(M \) so that \(M - S_1 \) consists of two components \(M_0 \) and \(\overline{M} \) where \(\pi_1(M_0) \approx Z \).

The inductive hypothesis applies to the 3-manifold obtained from \(\overline{M} \) by sewing a 3-cell \(B_1 \) onto \(S_1 \) along \(\text{Bd} \, B_1 \).

\textit{Case 2.} \(\pi_1(M) \) is freely reduced.

We proceed as in Case 1 only now we apply Theorem 3.3.

Bibliography

University of Michigan, Ann Arbor, Michigan 48104