ON THE DECOMPOSITION OF MODULES

BY ANDREAS DRESS

Communicated by Hyman Bass, March 3, 1969

Let \(R \) be a commutative ring with \(1 \in R \), \(A \) and \(R \)-algebra—not necessarily commutative—and let \(M, N \) be two \(A \)-left-modules. We write \(N - \text{rk}(M) \geq s \), if \(M \cong sN \oplus M' \) for some \(A \)-left-module \(M' \) with \(s \cdot N \) short for \(N \oplus N \oplus \cdots \oplus N \), \(s \)-times.

Then one can prove the following generalization of a theorem of Serre (cf. [1] or [4]).

Theorem 1. Assumptions.

(i) \(N \) is finitely presented as \(A \)-left-module, \(\text{End}_A(N) \) finitely generated as \(R \)-module and \(M \) a direct summand in a direct sum of finitely presented \(A \)-modules;

(ii) the maximal ideal spectrum of \(R \) is noetherian of dimension \(d \);

(iii) for any maximal ideal \(m \) in \(R \) we have \(N_m - \text{rk}(M_m) \leq d + s \) with \(N_m \), resp. \(M_m \) the \(A_m = R_m \otimes_R A \)-module \(R_m \otimes_R N \), resp. \(R_m \otimes_R M \).

Then \(N - \text{rk}(M) \geq s \).

Moreover, if \(R \) is noetherian, \(\hat{R}_m \) the \(m \)-adic completion of \(R \) for some maximal ideal \(m \) in \(R \), resp. \(\hat{N}_m \), resp. \(\hat{M}_m \) the \(\hat{A}_m = \hat{R}_m \otimes_R A \)-module \(\hat{R}_m \otimes_R N \), resp. \(\hat{R}_m \otimes_R M \), then

\[
N_m - \text{rk}(M_m) \geq d + s \iff \hat{N}_m - \text{rk}(\hat{M}_m) \geq d + s.
\]

One can also prove the following generalization of the Cancellation Theorem of Bass (cf. [1]).

Theorem 2. Assumptions.

(i) and (ii) as in Theorem 1;

(iii) \(M \) contains a direct summand \(P \) with \(N - \text{rk}_m(P) > d \) for all maximal ideals \(m \) in \(R \), which is a direct summand in some \(s \cdot N \);

(iv) \(Q \) is an \(A \)-left-module, which is also a direct summand in some \(s \cdot N \), and \(M' \) is some \(A \)-left-module with \(Q \oplus M \cong Q \oplus M' \).

Then \(M \cong M' \).

The proof follows closely those of Serre and Bass [1], [4], once the following observations have been made:

(1) If \(N \) is any \(A \)-left-module and if \(B = \text{End}_A(N) \)—acting from the right on \(N \)—then the contravariant functor \(\text{Hom}_A(\cdot, N) \) from \(A \)-left-modules to \(B \)-right-modules defines a contravariant equivalence between the category \([N]\) of those \(A \)-left-modules \(P \), which are a direct summand in some \(s \cdot N \) (and all possible \(A \)-homomorphisms as morph-
isms) and the category of finitely generated projective B-right-modules. The functor $\text{Hom}_A(N, \cdot)$ defines thus an equivalence between $[N]$ and the category of finitely generated projective B-left-modules.

(2) If N is a finitely presented A-module, $\rho: R \to \hat{R}$ a ring-homomorphism of R into some commutative ring \hat{R} (with $1 \in \hat{R}$ and $\rho(1) = 1$), such that \hat{R} becomes a flat R-module, and if \hat{M}, resp. \hat{N} stands for the $\hat{A} = \hat{R} \otimes_R A$-module $\hat{R} \otimes_R M$, then the natural homomorphism $\hat{R} \otimes_R \text{Hom}_A(M, N) \to \text{Hom}_\hat{A}(\hat{M}, \hat{N})$ is an isomorphism. (Cf. N. Bourbaki, Algèbre commutative, Chapter 1.)

(3) If M, N are any two A-modules and $\phi: M \to N$ an A-homomorphism, define

$$P(\phi) = \{ \psi \in \text{End}_A(N) \mid \psi \in \text{Hom}_A(M, N) \},$$
$$I(\phi) = \{ \psi \in \text{End}_A(M) \mid \psi \in \text{Hom}_A(M, N) \},$$
$$P_0(\phi) = \{ r \in R \mid r \cdot \text{Id}_N \in P(\phi) \},$$
$$I_0(\phi) = \{ r \in R \mid r \cdot \text{Id}_M \in I(\phi) \}. $$

$P(\phi)$ is a right $\text{End}_A(N)$-ideal,

$I(\phi)$ is a left $\text{End}_A(M)$-ideal,

$P_0(\phi)$ and $I_0(\phi)$ are R-ideals.

The following statements follow easily from (2):

With $\rho: R \to \hat{R}$ as in (2) and $\hat{\phi} = \text{Id}_{\hat{R}} \otimes \phi: \hat{M} \to \hat{N}$ we have

If N is finitely presented, then

$$P(\hat{\phi}) = \hat{P}(\phi), \quad P_0(\hat{\phi}) = \hat{P}_0(\phi).$$

If M is finitely presented and N a direct summand in a direct sum of finitely presented A-modules, then

$$I(\hat{\phi}) = \hat{I}(\phi), \quad I_0(\hat{\phi}) = \hat{I}_0(\phi).$$

There are many interesting applications of these observations and the two theorems above. For instance, in the case where A is a separable order over a Dedekind ring R, all this specializes to something closely related to the results of Jacobinski [2], [3]. We mention some immediate consequences of (3): If $\rho: R \to \hat{R}$ is faithfully flat and N finitely presented, then $\phi: M \to N$ is split-surjective if and only if $\hat{\phi}: \hat{M} \to \hat{N}$ is split-surjective.

If N is finitely presented, then $\phi: M \to N$ is split-surjective if and only if $\phi_m: M_m \to N_m$ is split-surjective for all maximal ideals m in R.

If M is finitely presented and N a direct summand in a direct sum of finitely presented modules, then $\phi: M \to N$ is split-injective if and only if all $\phi_m: M_m \to N_m$ are split-injective.
It is now not too difficult to go through with the proof of Serre [4], to get Theorem 1, whereas Theorem 2 is now a corollary to Bass’s Cancellation Theorem using (1).

REFERENCES