Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Characterizations of linear groups


Author: Michio Suzuki
Journal: Bull. Amer. Math. Soc. 75 (1969), 1043-1091
DOI: https://doi.org/10.1090/S0002-9904-1969-12351-7
MathSciNet review: 0260889
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. Artin, The order of the classical simple groups, Comm. Pure Appl. Math. 8 (1955), 455-472. MR 73601
  • 2. H. Bender, Finite groups having a strongly embedded subgroup (to appear).
  • 3. R. Brauer, On the structure of groups of finite order, Proc. Internat. Congr. Math., vol. 1, North-Holland, Amsterdam, 1954, pp. 209-217. MR 95203
  • 4. R. Brauer, On finite Desarguesian planes. I, II, Math. Z. 90 (1966), 117-151. MR 193152
  • 5. R. Brauer and P. Fong, A characterization of the Mathieu group M12, Trans. Amer. Math. Soc. 122 (1966), 18-47. MR 207817
  • 6. R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2) 62 (1955), 565-583. MR 74414
  • 7. R. Brauer and M. Suzuki, On U3(q) (unpublished).
  • 8. R. Brauer M. Suzuki and G. E. Wall, A characterization of the one-dimensional unimodular groups over finite fields, Illinois J. Math. 2 (1958), 718-745. MR 104734
  • 9. W. Burnside, Theory of groups of finite order, Cambridge, 1911.
  • 10. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 166261
  • 11. P. Fong, On a characterization of G2(q) and D24(q), Sympos. Theory of Finite Groups, Benjamin, New York, 1969, pp. 25-29.
  • 12. W. Gaschütz, Zur Erweiterungstheorie der endlichen Gruppen, Crelle 190 (1952), 93-107. MR 51226
  • 13. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403- 420. MR 202822
  • 14. G. Glauberman, A characterization of the Suzuki groups, Illinois J. Math. 12 (1968), 76-98. MR 225869
  • 15. D. Gorenstein, Finite groups the centralizers of whose involutions have normal 2-complements, Canad. J. Math. 21 (1969), 335-357. MR 242939
  • 16. D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 231903
  • 17. P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), 787-801. MR 105441
  • 18. D. Held, A characterization of the alternating groups of degree eight and nine, J. Algebra 7 (1967), 218-237. MR 218444
  • 19. D. Held, A characterization of some multiply transitive permutation groups. I, Illinois J. Math. 13 (1969), 224-240. MR 238944
  • 20. D. Held, Some simple groups related to M, Sympos. Theory of Finite Groups, Benjamin, New York, 1969, pp. 121-124. MR 241526
  • 21. N. Ito, On a class of doubly, but not triply transitive permutation groups, Arch. Math. 18 (1967), 564-570. MR 223441
  • 22. Z. Janko, A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra 4 (1966), 147-136. MR 193138
  • 23. Z. Janko, A characterization of the finite simple group PSp4(3), Canad. J. Math. 19 (1967), 872-894. MR 214672
  • 24. Z. Janko, Some new simple groups of finite order. I, 1st. Naz. Alta Mat. Symposia Math. 1 (1968), 25-64. MR 244371
  • 25. Z. Janko, A characterization of the Mathieu simple groups. I, J. Algebra 9 (1968), 1-19. MR 229710
  • 26. Z. Janko and S. K. Wong, A characterization of the Higman-Sims simple group (to appear). MR 260866
  • 27. T. Kondo, On a characterization of the alternating group of degree eleven, Illinois J. Math. 13 (1969) 528-541. MR 246956
  • 28. T. Kondo, On the alternating groups. I, II, III, J. Univ. Tokyo 15 (1968), 87-97; J. Math. Soc. Japan 21 (1969), 116-139; (to appear). MR 240182
  • 29. E. T. Parker, On collineations of symmetric designs, Proc. Amer. Math. Soc. 8 (1957), 350-351. MR 86319
  • 30. K. W. Phan, A characterization of L≡ - l (mod 4), Sympos. Theory of Finite Groups, Benjamin, New York, 1969, pp. 39-42.
  • 31. K. W. Phan, A characterization of U (to appear).
  • 32. M. Suzuki, On characterizations of linear groups. I, II, Trans. Amer. Math. Soc. 92 (1959), 191-219; III, Nagoya J. Math. 21 (1961), 159-183; IV, J. Algebra 8 (1968), 223-247; V, VI (to appear). MR 108536
  • 33. M. Suzuki, Two characteristic properties of (ZT)-groups, Osaka J. Math. 15 (1963) 143-150. MR 152570
  • 34. M. Suzuki, Finite groups of even order in which Sylow , Ann. of Math. (2) 80 (1964), 58-77. MR 162841
  • 35. M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math. (2) 82 (1965), 191-212. MR 183773
  • 36. G. Thomas, A characterization of the groups G, J. Algebra (to appear).
  • 37. G. Thomas, A characterization of the Steinberg groups D24(q), q = 2 (to appear).
  • 38. G. Thomas, A characterization of the unitary groups PSU5(q2), q = 2 (to appear).
  • 39. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437. (Balance to appear.) MR 230809
  • 40. J. Tits, Théorème de Bruhat et sous-groupes paraboliques, C. R. Acad. Sci. Paris 254 (1962), 2910-2912. MR 138706
  • 41. J. Tits, Buildings of spherical types and finite BN-pairs (to appear). MR 470099
  • 42. H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z. 73 (1960), 146-158. MR 117286
  • 43. W. J. Wong, A characterization of the alternating group of degree 8, Proc. London Math. Soc. 50 (1963), 359-383. MR 147526
  • 44. W. J. Wong, A characterization of PSp4(q), q odd, Sympos. Theory of Finite Groups, Benjamin, New York, 1969, pp. 31-38. Trans. Amer. Math. Soc. 139 (1969), 1-35. MR 252504
  • 45. W. J. Wong, A characterization of the finite projective symplectic groups PSp6 (q) (to ppear).
  • 46. H. Yamaki, A characterization of the alternating groups of degrees 12, 13, 14, 15, J. Math. Soc. Japan 20 (1968), 673-694. MR 232834
  • 47. H. Yamaki, A characterization of the simple group Sp (6, 2) (to appear). MR 255670


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1969-12351-7

American Mathematical Society