EMBEDDING SPHERES AND BALLS IN CODIMENSION ≤ 2

BY MITSUYOSHI KATO

Communicated by William Browder, April 28, 1969

1. Introduction. In this note we announce some results on existence of PL embeddings of n-spheres and n-balls into a compact $(n-1)$-connected q-manifold $(n \geq q - 2)$ by extending techniques of our preceding papers [5], [4]. Details will appear later. The result for locally flat embeddings with codimension two is satisfactory, although in general the low dimensional cases are still open.

By $U_{k-1} D^n, U_{k-1} S^{n-1}$ we denote the disjoint unions of r copies of the standard PL n-ball D^n, the standard PL n-sphere $S^n = \partial D^{n+1}$, resp. The embedding theorem of balls in codimension ≤ 2 is as follows:

THEOREM A. Let Q be a compact $(n-1)$-connected PL q-manifold with nonempty boundary ∂Q.

Let $\phi: U_{k-1} D^n \to Q$ be a map such that $\phi(U_{k-1} S^{n-1}) \subset \partial Q$ and $\phi|U_{k-1} S^{n-1}$ is a PL embedding.

(I). Suppose that one of the following holds.

(0) $q = n \neq 3, 4$,

(1) $q = n+1 \neq 4$,

(2) $q = n+2 \neq 4$ and $r = 1$.

Then ϕ is homotopic to a proper PL embedding $f: U_{k-1} D^n \to Q$ keeping $\phi|U_{k-1} S^{n-1}$ fixed.

(II). Suppose that $\phi|U_{k-1} S^{n-1}$ is locally flat, and that

(1) $q = n+1 \neq 4$ or

(2) $q = n+2 = \text{odd}$ and $r = 1$.

Then ϕ is homotopic to a locally flat PL embedding $f: U_{k-1} D^n \to Q$ keeping $\phi|U_{k-1} S^{n-1}$ fixed.

(Refer to [13, Chapter 8, Corollary 5].)

In case $q = n = 0$, Theorem A, (I) is equivalent to the generalized Poincaré conjecture. In case $q = n+1 = 4$, Theorem A is still open. In case $n = 2$ and $Q = D^4$, refer to [13, Chapter 8, Counterexample 1].

In case $q = n+2 = \text{even}$, Theorem A, (II) is false because of the existence of nonslice knots ([1] and [6, Chapter III]).

The embedding theorem of spheres in codimension ≤ 2 is as follows:

1 Work supported in part by Sakkokai Foundation and National Science Foundation grant GP-7952X.

1260
THEOREM B. Let Q be a compact $(q-3)$-connected PL q-manifold. Suppose that $q \neq 4$.

(I). If $q \geq 5$, a basis of $H_{q-1}(Q; \mathbb{Z})$ can be represented by mutually disjoint locally flat PL$(q-1)$-spheres. In particular, any element of $H_{q-1}(Q; \mathbb{Z})$ can be represented by a locally flat PL$(q-1)$-sphere.

(II). Any element of $H_{q-2}(Q; \mathbb{Z})$ can be represented by a PL$(q-2)$-sphere.

(III). Further, if $q = \text{odd}$, then any elements of $H_{q-2}(Q; \mathbb{Z})$ can be represented by a locally flat PL$(q-2)$-spheres. (Refer to [2, Corollary 1.2].)

Theorem B, (I) is best possible by the homology reason. In case $q = 4$, Theorem B, (I) and (II) are still open.

Theorem B, (III) is best possible because of the following.

THEOREM C (WITH RONNIE LEE). For each even integer $n \geq 2$, there exists a compact PL$(n+2)$-manifold Q which is an abstract regular neighborhood of S^n such that no nontrivial element of $H_n(Q; \mathbb{Z})$ can be represented by a locally flat PL n-sphere. (Refer to [7].)

This is a modification of our preceding results [5, Theorem 2], whose proof may be improved to obtain the above by making use of Reidemeister torsions, which was pointed out to the author by Ronnie Lee.

As an implication of Theorems A and B we have the codimension ≤ 2 extension of Irwin's Theorem [2].

THEOREM D. Let M and Q be compact PL m- and q-manifolds. Let $\phi: (M, \partial M) \to (Q, \partial Q)$ be a map such that $\phi|\partial M$ is a PL embedding and $\phi^{-1}(\partial Q) = M$.

Suppose that $m \geq 5$, $q-m \leq 2$ and

(1) M is $(2m-q)$-connected, and

(2) Q is $(2m-q+1)$-connected.

Then ϕ is homotopic to a proper PL embedding $f: M \to Q$ keeping ∂Q fixed.

We remark here that by the normal PL bundle theory for locally flat PL embeddings [3], [11], [12] and the so-called Cairns-Hirsch smoothing theory [8], the adjective "locally flat PL" in theorems can be replaced by "smoothable," if Q is smoothable.

2. The structure of compact $(q-3)$-connected q-manifolds $(q \geq 5)$. In the following, all things are considered from the piecewise linear viewpoint. Let Q be a compact $(q-3)$-connected q-manifold with nonempty boundary ∂Q. Suppose that $q \geq 5$. Then by Poincaré-
Lefschetz duality and the universal coefficient theorem, $H_{q-1}(Q) \cong H^1(Q, \partial Q) \cong H_1(Q, \partial Q)$, $H_{q-2}(Q) \cong H^2(Q, \partial Q) \cong H_2(Q, \partial Q)$ are free of ranks α, β, where α, β are the Betti numbers of $H_{q-1}(Q), H_{q-2}(Q)$, resp. Let $x = \{x_1, \ldots, x_\alpha\}$, $y = \{y_1, \ldots, y_\beta\}$ be given bases of $H_{q-1}(Q), H_{q-2}(Q)$ and let $\bar{x} = \{\bar{x}_1, \ldots, \bar{x}_\alpha\}$, $\bar{y} = \{\bar{y}_1, \ldots, \bar{y}_\beta\}$ be corresponding bases of $H_1(Q, \partial Q), H_2(Q, \partial Q)$ by the isomorphism above. From the general position we can represent these bases \bar{x} and \bar{y} by properly embedded arcs and disks having trivial normal bundles, since Q is 1-connected and $H_2(Q, \partial Q) = H_1(\partial Q)$. Let C be the complement of the union of open normal bundles of the disks and the arcs in Q. Then we have a handle decomposition; $Q = (\partial Q \times D) + (\tilde{\delta}_1) + \cdots + (\tilde{\delta}_a) + (\tilde{\gamma}_1) + \cdots + (\tilde{\gamma}_b) + C$, where handles $(\tilde{\delta}_i), (\tilde{\gamma}_i)$ are just the trivial normal bundles of the arcs, disks representing x_i, y_k and hence of indices 1, 2, resp. By looking at this decomposition upside down, we have the dual decomposition;

$$Q = C + (\psi_1) + \cdots + (\psi_\beta) + (\phi_1) + \cdots + (\phi_\alpha),$$

where $(\phi_\alpha), (\psi_\beta)$ are the duals to $(\tilde{\delta}_a), (\tilde{\gamma}_b)$ and of indices $(q-1), (q-2)$, resp. Then the handles $(\phi_\alpha), (\psi_\beta)$ represent j_*x, j_*y, of $H_{q-1}(Q, C), H_{q-2}(Q, C)$, where $j_*: \tilde{H}_*(Q) \to H_*(Q, C)$ is the natural homomorphism from the reduced homology group $\tilde{H}_*(Q)$ to $H_*(Q, C)$. Notice that handles $(\phi_\alpha), (\psi_\beta)$ are mutually disjoint. Therefore, $H_*(Q, C)$ is torsion free and $j_*: \tilde{H}_*(Q) \to H_*(Q, C)$ is an isomorphism and $\tilde{H}_*(C) = 0$. On the other hand by the general position C is 1-connected. Thus C is a compact contractible g-manifold.

Now we have proved the following

Theorem 2.1. Let Q be a compact $(q-3)$-connected q-manifold. Let α, β be the Betti numbers of $H_{q-1}(Q), H_{q-2}(Q)$. Suppose that $q \geq 5$. Given bases x, y of $H_{q-1}(Q), H_{q-2}(Q)$, then we have a handle decomposition of Q relative to a compact contractible g-manifold C;

$$Q = C + (\psi_1) + \cdots + (\psi_\beta) + (\phi_1) + \cdots + (\phi_\alpha)$$

such that handles $(\phi_\alpha), (\psi_\beta)$ are mutually disjoint, of indices $q-1, q-2$ and represent the bases j_*x, j_*y, resp.

Remark. For an $(n-1)$-submanifold M of ∂Q, if $q = n+1$ and $\beta = 0$ or if $q = n+2$, then by the general position we may take the handle decomposition so that $M \subset \partial C$.

3. Embeddings of balls and spheres into a contractible manifold and a homology sphere. In codimension two case, the proof of Theorems A and B is based on the following special case of Theorem A
which is an extension of results on knot cobordisms due to Kervaire [6] and Levine [9].

Theorem 3.1. Let C be a compact contractible q-manifold and let $\phi: \bigcup_{k=0}^{r} S^{n-1}_k \to \partial C$ be a locally flat embedding. Let Q be a manifold obtained from C by attaching r handles of index n via a framing of $\phi|_{U_k^{n-1} S^{n-1}_k}$.

Suppose that $q = n + 2 = 2m + 1$. Then $\phi|_{S^{n-1}_0}$ extends to a locally flat embedding f such that $f(D^n)$ meets the right-hand ball with algebraic intersection number 1.

Suppose that $q = n + 2 = 2m + 2 \geq 6$. Then f can be taken to be locally flat.

In codimension one case, it is based on the following

Lemma 3.2. Suppose that $q \geq 5$.

1. Let C and C' be compact contractible q-manifolds with homeomorphic boundaries ∂C and $\partial C'$. Then a homeomorphism $h: \partial C \to \partial C'$ extends to a homeomorphism $H: C \to C'$.

2. A homology $(q-1)$-sphere M bounds a contractible q-manifold.

This may be well known and implies the following

Theorem 3.4. Let C be a compact contractible q-manifold and let $\phi: \bigcup_{k=0}^{r} S^{n-1}_k \to \partial C$ be an embedding. Suppose that $q = n + 1 \geq 5$.

Then ϕ extends to a proper embedding $f: \bigcup_{k=1}^{r} D^n_k \to C$.

Finally, the proof of Theorem A may be reduced to the locally flat case in virtue of the following

Lemma 3.5. Let M be a homology m-sphere, and let $f: S^n \to M$ be an embedding. Suppose that $(m, n) \neq (4, 2)$. Then f is isotopic to a locally flat embedding (perhaps by a locally knotted isotopy) keeping the complement of a given regular neighborhood of $f(S^n)$ in M fixed.

This is a generalization of Fox-Milnor-Noguchi's Theorem [1], [10].

4. Applications: Some results on compact $(q-3)$-connected q-manifolds. An implication of Theorem 2.1 is the following generalization of [4, Theorem 3.11] and [5, Theorem 5].

Theorem 4.1. Let Q be a compact $(q-3)$-connected q-manifold with nonempty boundary and let α, β be the Betti numbers of $H_{q-1}(Q), H_{q-4}(Q)$. Suppose that $q \geq 5$.
Then the boundary \(\partial Q \) of \(Q \) has the homology of a manifold obtained from some copies of \(S^{r-1} \) and \(\beta \) copies of \(S^{r-2} \times S^1 \) by taking \(\alpha + 1 \) connected sums.

(2) Conversely, if a closed \((q-1)\)-manifold \(M \) has the homology of the manifold above, then \(M \) bounds a compact \((q-3)\)-connected \(q \)-manifold \(Q \) so that \(\alpha, \beta \) are the Betti numbers of \(H_{q-1}(Q) \) and \(H_{q-2}(Q) \).

(3) Moreover, if \((Q, \partial Q)\) is oriented, then there are at most \(2\beta\) distinct orientation preserving homeomorphism classes of oriented compact \((q-3)\)-connected \(q \)-manifold \((Q', \partial Q')\) whose boundaries \(\partial Q' \) are homeomorphic to \(\partial Q \) preserving orientations.

(4) In particular, if \(\beta = 0 \), then an orientation preserving homeomorphism \(h: \partial Q \to Q' \) extends to an orientation preserving homeomorphism \(H: Q \to Q' \).

Let \(Q \) be a compact \(q \)-manifold homotopy equivalent to \(S^n \). We define an invariant \(\omega(Q) \in \mathbb{Z} \) as follows: \(\omega(Q) = 0 \), if \(Q \) admits a locally flat embedding \(f: S^n \to Q \) which is a homotopy equivalence, and \(\omega(Q) = 1 \), otherwise. Note that \(\omega(Q) = 0 \) if and only if a basis of \(H_n(Q) \) can be represented by a locally flat \(n \)-sphere. In the situation above we have

Theorem 4.2. (I). The following statements are equivalent:

1. \(\omega(Q) = 0 \).
2. \(Q \) can be embedded in \(S^n \).
3. Any embedding \(f: S^n \to \text{Int } Q \) is isotopic to a locally flat embedding keeping the complement of a given regular neighborhood of \(f(S^n) \) in \(Q \) fixed.

(II). In particular, if \(\omega(Q) = 0 \), then \(Q \times D \) is homeomorphic to \(S^n \times D^{r-n+1} \) and the double of \(Q \) is homeomorphic to \(S^n \times S^{r-n} \).

The statements (I), (III) of Theorem B imply that \(\omega(Q) = 0 \), provided \(q = n + 1 \geq 5 \) or \(q = n + 2 = \text{odd} \).

Corollary 4.3. Let \(Q \) be a compact \(q \)-manifold homotopy equivalent to \(S^n \). Suppose that \(q \geq 5 \) and either \(q = n + 1 \) or \(q = n + 2 = \text{odd} \). Then all the statements of Theorem 4.2 hold.

In case \(q = 4 \), we have some weaker statements: Let \(Q \) be a compact \(4 \)-manifold. Suppose that \(Q \) collapses a 2-subpolyhedron \(L \) homeomorphic to the wedge \(\bigvee_{k=1}^2 S^2_k \). We define an invariant \(I(Q) \) in \(\mathbb{Z}_2 \) as follows: \(I(Q) = 0 \), if each 2-sphere of \(L \) has the self-intersection number a multiple of 2 and \(I(Q) = 1 \), otherwise. Then we have

Theorem 4.4. (I). The following statements are equivalent:

1. \(I(Q) = 0 \).
EMBEDDING SPHERES AND BALLS

(2) $Q \times D$ is homeomorphic to a boundary connected sum of α copies of $S^3 \times D^3$.

(3) The double of Q is homeomorphic to a connected sum of α copies of $S^3 \times S^3$.

(II). The following statements are equivalent:

1. $I(Q) = 1$.

2. $Q \times D$ is homeomorphic to a boundary connected sum of $\alpha - 1$ copies of $S^3 \times D^3$ and the nontrivial D^3 bundle over S^3.

3. The double of Q is homeomorphic to a connected sum of $(\alpha - 1)$ copies of $S^3 \times S^3$ and the nontrivial S^3 bundle over S^3.

REFERENCES

5. ———, On compact (n+2)-manifolds homotopy equivalent to S^n (unpublished).

