Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A characterization of homogeneous plane continua that are circularly chainable


Author: C. E. Burgess
Journal: Bull. Amer. Math. Soc. 75 (1969), 1354-1356
DOI: https://doi.org/10.1090/S0002-9904-1969-12421-3
MathSciNet review: 0247611
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729-742. MR 27144
  • 2. R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51. MR 43451
  • 3. R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653-663. MR 43450
  • 4. R. H. Bing, Each homogeneous nondegenerate chainable continuum is a pseudo-arc, Proc. Amer. Math. Soc. 10 (1959), 345-346. MR 105072
  • 5. R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math. 12 (1960), 209-230. MR 111001
  • 6. R. H. Bing, Embedding circle-like continua in the plane, Canad. J. Math. 14 (1962), 113-128. MR 131865
  • 7. R. H. Bing and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959), 171-192. MR 100823
  • 8. C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959), 653-659. MR 110999
  • 9. C. E. Burgess, Homogeneous continua which are almost chainable, Canad. J. Math. 13 (1961), 519-528. MR 126255
  • 10. Lawrence Fearnley, The psuedo-circle is not homogeneous, Bull. Amer. Math. Soc. 75 (1969), 554-558. Notices Amer. Math. Soc. 15 (1968), Abstract #68T-G25, 942. MR 242126
  • 11. F. B. Jones, On a certain type of homogeneous plane continuum, Proc. Amer. Math. Soc. 6 (1955), 735-740. MR 71761
  • 12. B. Knaster, Un continu dont tout sous-continu est indécomposable, Fund. Math. 3 (1922), 247-286.
  • 13. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegernerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581-594. MR 25733
  • 14. E. E. Moise, A note on the pseudo-arc, Trans. Amer. Math. Soc. 64 (1949), 57-58. MR 33023
  • 15. J. T. Rogers, Jr., The pseudo-circle is not homogeneous, Notices Amer. Math. Soc. 15 (1968), 943.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1969-12421-3

American Mathematical Society