CONTRACTIVE PROJECTIONS AND PREDICTION OPERATORS

BY M. M. RAO

Communicated by Jack Schwartz, July 7, 1969

1. Introduction. The purpose of this note is to present some results on characterizations of subspaces of a general class of Banach function spaces (BFS) admitting contractive projections onto them, and to include an application to nonlinear prediction (and approximation) theory.

Let L^p be the subspace of all measurable scalar functions f on (Ω, Σ, μ) with $\rho(f) = \rho(|f|) < \infty$, where $\rho(\cdot)$ is a function norm, i.e., a norm with the additional properties

(i) $0 \leq f_n \uparrow \Rightarrow \rho(f_n) \uparrow$, and

(ii) $\rho(\cdot)$ verifies the triangle inequality for infinite sums. Then L^p is also complete, called a BFS, (cf. [6] and [4]). It will also be assumed, for convenience, that $0 \leq f_n \uparrow \Rightarrow \rho(f_n) \uparrow \rho(f)$, the Fatou property. $\rho(\cdot)$ is an absolutely continuous norm (a.c.n.) if for each $f \in L^p$, $\rho(f_{\chi A_n}) \downarrow 0$ for any $A_n \in \Sigma$, $A_n \downarrow \emptyset$. If \mathcal{X} is a \mathcal{B}-space, $L^p_{\mathcal{X}}$ is the space of \mathcal{X}-valued strongly measurable functions f on Ω, with $\rho(|f|_{\mathcal{X}}) < \infty$, where $\rho(\cdot)$ is as above. Then $L^p_{\mathcal{X}}$ is also complete. Finally let $\mathcal{M}_\mathcal{X} = \mathcal{S}\{f\chi : f \in L^p, \ x \in \mathcal{X}\} \subset L^p_{\mathcal{X}}$. A projection is a linear idempotent operator.

The projection problem, stated at the outset, has been first treated for $L^p = L^1$ in [5], and a more detailed consideration of the same case, with $\mu(\Omega) < \infty$, has been given in [2]. If $L^p = L^p$, also with $\mu(\Omega) < \infty$, it was then considered in [1], and these results were extended for $L^p = L^p$, the Orlicz spaces, with a.c.n. and μ σ-finite, in [10]. The general solution of the problem in the scalar case, and a less general one in the vector case, will be given below.

2. Contractive projections. Let $S \subset L^p$ be a closed subspace. If $L^p \neq L^p$, then, as is well known, not every S is the range of a bounded projection. The positive solution is given by the following result for L^p-spaces. (An operator T is positive if $Tf \geq 0$ for $f \geq 0$.)

Theorem 1. If (Ω, Σ, μ) is a measure space, let $L^p(\Sigma)$ be the BFS defined above. Consider the statements:

(a) S is the range of a (positive) contractive projection in $L^p(\Sigma)$.

(b) there is an isometric isomorphism $\Psi : L^p(\Sigma) \rightarrow L^p(\Sigma)$, ($\Psi =$ identity) such that

1 Supported, in part, under the NSF grant GP-8777.
(i) $\Psi(S)$ is a B-lattice, i.e., a selfadjoint space with real functions forming a lattice, and

(ii) $0 \leq f_n \in \Psi(S), f_n \uparrow f, f \in L^p(\Sigma) \Rightarrow f \in \Psi(S)$.

(c) there is a (positive) isometric isomorphism between some $L^p(\mathcal{A})$

on some measure space (S, \mathcal{A}, μ) and S.

(d) same as (c) except "topological equivalence" replaces "isometric isomorphism."

Then one has $(c) \Rightarrow (a) \iff (b) \Rightarrow (d)$. In case $\rho(\cdot)$ also verifies, $\chi_A \in L^p(\Sigma)$

for each $A \in \Sigma$ with $\mu(A) < \infty$, then $(a) \iff (c)$ also holds.

Remark. If $\rho(f) = \int_0^1 |f| \, d\mu/x$, with $\Omega = [0, 1]$, $\mu = \text{Leb. meas.}$, then $\rho(\cdot)$ is a function norm, but $\rho(\chi_0) = \infty$. Thus the last condition of the theorem is a restriction on ρ. It can be shown easily that $b(ii)$ automatically holds if ρ is an a.c.n., but will be needed otherwise.

This result is proved through several isomorphisms using equivalent measure spaces and the results of [13]. However, for an application of the latter, a first reduction is needed and is provided by the following result which has independent interest.

Theorem 2. If $L^p(\Sigma)$ is a BFS on (Ω, Σ, μ), then there exists a measure space (S, \mathcal{A}, ν) where S is a locally compact space, \mathcal{A} is a σ-field generated by the compact subsets of S and ν is a measure assigning finite measure for compacts, in terms of which $L^p(S, \mathcal{A}, \nu)$, or $L^p(\mathcal{A})$, is isometrically (and lattice) isomorphic to $L^p(\Sigma)$. Moreover each f in $L^p(\mathcal{A})$ has a compact support. If there exists a strictly positive element in $L^p(\mathcal{A})$, then S can be chosen compact, so that (S, \mathcal{A}, ν) is a finite measure space.

If μ is σ-finite then a strictly positive element always exists in $L^p(\Sigma)$ (e.g., a weak unit, cf. [6, p. 153]) and the last part contains this case. This result is proved using a method of proof of ([8, Theorem 2.1]) and some results of [13]. (See also [3] for the L^1-case.) With this reduction, the problem of Theorem 1 can be transferred to $L^p(\mathcal{A})$. Then it can be isometrically embedded in $L^p(\widehat{A})$ on a localizable measure space $(\widehat{S}, \widehat{\mathcal{A}}, \widehat{\nu})$ where \mathcal{A} goes, under an algebraic isomorphism, into a subring of $\widehat{\mathcal{A}}, [13, \text{Theorem 3.4}]$. Then the proof is successively reduced to the case of finite measure space where the methods and ideas of [2] and [10] can be generalized and used. In this way the full result of Theorem 1 is established.

In general there will be many contractive projections onto S, when one exists. The following gives a uniqueness result.

Proposition 3. Suppose $L^p(\Sigma)$ is a rotund (= strictly convex) and smooth (= norm is Gâteaux differentiable) reflexive space on (Ω, Σ, μ). Then a closed subspace $S \subset L^p(\Sigma)$ can be the range of at most one contract-
1969] CONTRACTIVE PROJECTIONS AND PREDICTION OPERATORS 1371

tive projection. If in particular $\mathcal{S} = L^p(\mathcal{B})$, $\mathcal{B} \subseteq \mathcal{F}$, a σ-field, then there exists a unique positive contractive projection onto \mathcal{S}, namely the (generalized) conditional expectation $E^\mathcal{B} : L^p(\mathcal{F}) \to L^p(\mathcal{B})$.

The case of $L^p = L^p$, $1 < p < \infty$, $\mu(\Omega) < \infty$, of the above result was obtained in ([1, p. 392]). The general form of P is not-simple. The following case is illustrative.

Proposition 4. Let $P : L^p(\Sigma) \to L^p(\mathcal{B})$ be a contractive projection (which exists by Theorem 1), where $\mathcal{B} \subseteq \mathcal{F}$ is a σ-field with $\mu_\mathcal{B}$ σ-finite, and $L^p(\Sigma)$ is a BFS. Then there exists a locally integrable function g such that

(i) $P(\cdot) = E^\mathcal{B}(g \cdot)$, and

(ii) $E^\mathcal{B}(g) = 1$ a.e., where $E^\mathcal{B}$ is the conditional expectation relative to \mathcal{B}.

This shows that while $E^\mathcal{B}$ itself is a contractive projection onto $L^p(\mathcal{B})$, it is not the general form of the operator. If ρ is an a.c.n., then it can be shown that $g = 1$ a.e. here, and this is not necessarily true in the general case. The above two results are proved by an extension of the methods of [10]. A special case of the above proposition for L^p-spaces, with $\mu(\Omega) < \infty$, was discussed in [11].

For the case of \mathcal{M}_G^p spaces, the following result holds.

Theorem 5. Let $L^p(\Sigma)$ and \mathcal{M}^p_G be as defined in §1. If $\mathcal{S} \subseteq L^p(\Sigma)$ is a closed subspace, let $\mathcal{S} \mathcal{X} = \{ f \mathcal{X} : f \in \mathcal{S} \}$, $\mathcal{X} \subseteq \mathcal{M}^p_G$. Also let $\chi_A \in L^p(\Sigma)$ for each $A \subseteq \Sigma$ with $\mu(A) < \infty$. Then the following four statements are equivalent:

(i) \exists contractive projection $P : L^p(\Sigma) \to \mathcal{S}$.

(ii) \exists contractive projection $P : \mathcal{M}^p_G \to \mathcal{S}$.

(iii) $\exists L^p(\mathcal{B}_1, \mu_1)$, on some measure space $(\Sigma_1, \mathcal{B}_1, \mu_1)$ and \mathcal{S} is isometrically isomorphic to $L^p(\mathcal{B}_1, \mu_1)$.

(iv) $\mathcal{S} \mathcal{X}$ is isometrically isomorphic to $\mathcal{M}^p_G(\mathcal{B}_1, \mu_1)$.

This result is proved on using Theorem 1, and the fact that $L^p \otimes \mathcal{X} \subseteq \mathcal{M}^p_G$ and is dense in the latter (see [9]). Here \otimes, is the greatest cross-norm, and one then uses a result on projections in cross-spaces [12, p. 58]. The general case of $L^p_\mathcal{X}$ itself does not seem to follow in this way. The above one already includes the $L^p_\mathcal{X}$, $1 \leq p \leq \infty$ case.

3. Prediction operators. A subspace $M \subseteq L^p$ is said to be a *Tshebyshev subspace* if for each $x \in L^p$ there is a unique $x_0 \in M$ with $\rho(x - x_0) = \min \{ \rho(x - y) : y \in M \}$. The operator $P_M : x \mapsto x_0 \in M$, is
called a *prediction operator* in nonlinear prediction theory. Though $P_M^* = P_M$, it is not linear in general. If it is linear, the powerful methods of linear analysis will be available in their study. So this is a natural question to treat. If P_M is linear, then $Q = I - P_M$ is a contractive projection with M as its null space (and the converse also holds). This is the connection between projections and predictions, and a solution can be presented as follows.

Theorem 6. Let $M \subseteq L^p$ be a Tshebyshev subspace, and P_M be the prediction operator for M. If P_M is linear then the quotient space L^p/M is topologically equivalent to $L^p(\mathfrak{B})$ on some measure space (S, \mathfrak{B}, μ). Conversely, if L^p/M is isometrically isomorphic to $L^p(\mathfrak{B})$ on some (S, \mathfrak{B}, μ) then P_M is linear.

In case $\chi_A \subseteq L^p$ for each $A \subseteq \Sigma$, $\mu(A) < \infty$, then the above can be stated as: P_M is linear $\iff L^p/M$ is isometrically isomorphic to an $L^p(\mathfrak{B})$. If $L^p = L^p$, $1 < p < \infty$, $\mu(\Omega) < \infty$, the latter has been obtained in [1]. The general case can be proved quickly with the results of the preceding section. However, it was noted in [10], that for the case $L^p \neq L^2$, M must be relatively complicated since P_M will not be linear if M is of the form $L^p(\Sigma_1)$, $\Sigma_1 \subseteq \Sigma$, a σ-field.

The proofs of all the results above involve first a characterization of the adjoint space $(L^p)^*$ of L^p. This is involved. It is obtained by generalizing the work of ([7] and [4]) appropriately. With these results (and those of [9]), and of [13], the above bare sketch is completed. The details and related results will be published separately.

References

MATHEMATISCHE INSTITUT DER UNIVERSITÄT, WIEN, AND
CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENNSYLVANIA 15213