MATCHING THEOREMS FOR COMBINATORIAL GEOMETRIES

BY MARTIN AIGNER1 AND THOMAS A. DOWLING2

Communicated by Gian-Carlo Rota, July 18, 1969

1. Introduction. Let $G(S)$ and $G(T)$ be combinatorial geometries of finite rank on sets S and T, respectively, and let $R \subseteq S \times T$ be a binary relation between the points of $G(S)$ and $G(T)$. By a matching from $G(S)$ into $G(T)$, we understand a one-one function f from an independent set $A \subseteq S$ onto an independent set $B \subseteq T$ with $(a, f(a)) \in R$ for all $a \in A$. In this note, we present a characterization of matchings of maximum cardinality, a max-min theorem, and a number of related results. In the case when $G(S)$ and $G(T)$ are both free geometries, Theorems 1 and 2 reduce to “the Hungarian method” as introduced by Egerváry and Kuhn [1], and to the König-Egerváry theorem, respectively. Corollary 2 for the case when $G(S)$ is a free geometry and $G(T)$ arbitrary was first discovered by Rado [6] (see also Crapo-Rota [2]). When both $G(S)$ and $G(T)$ are free geometries, Corollary 2 reduces to the well-known SDR theorem.

2. Terminology. For an arbitrary geometry $G(S)$, the closure operator will be denoted by J and the rank function by r. $(G(S), G(T), R)$ shall denote the system of the two geometries together with R, and $R(S') = \{ y \mid \text{there is some } x \in S' \text{ with } (x, y) \in R \}$ for $S' \subseteq S$. Let (A, B, f) denote a matching from A onto B. $M = \{ (a, f(a)) \mid a \in A \}$ is called the edge set of the matching (A, B, f), and we adopt the convention $M = (A, B, f)$. The common cardinality of A, B, M is called the size $v(M)$ of the matching. A support of $(G(S), G(T), R)$ is a pair (C, D) of closed sets, where $C \subseteq S, D \subseteq T$, such that $(c, d) \in R$ implies at least one of $c \in C, d \in D$ holds. The order λ of a support (C, D) is defined as $\lambda(C, D) = r(C) + r(D)$. Finally, an augmenting chain with

AMS Subject Classifications. Primary 0504, 0535, 0540; Secondary 0460, 0630.
Key Words and Phrases. Combinatorial geometry, matroid, binary relation between geometries, matching, Hungarian method, augmenting chain, König-Egerváry theorem, marriage theorem, transversal pregeometry.

1 Research supported by the United States Air Force Grant AFOSR-68-1406.
2 Research supported in part by National Science Foundation Grant No. GU-2059.
respect to the matching \(M = (A, B, f) \) is a sequence of \(2n+1 \) distinct pairs \((a'_i, b'_i), (b_1, a_1), (a'_1, b'_1), \ldots, (b_n, a_n), (a'_n, b'_{n+1})\) such that

1. \((a_i, b_i) \in M, \quad (a'_i, b'_{i+1}) \in R - M, \)
2. \(a'_i \in S - J(A), \quad b_{n+1} \in T - J(B), \)
3. \(a'_i \in J(A), \quad a'_i \notin J \left(A - \bigcup_{j=1}^{i} a_j \cup \bigcup_{j=1}^{i-1} a'_j \right), \)
4. \(b'_i \in J(B), \quad b'_i \notin J \left(B - \bigcup_{j=1}^{i} b_j \cup \bigcup_{j=1}^{i-1} b'_j \right) \)

for \(1 \leq i \leq n. \)

3. The main results.

Theorem 1. A matching \(M = (A, B, f) \) in \((G(S), G(T), R) \) is of maximum size if and only if there does not exist an augmenting chain with respect to \(M. \)

Theorem 2. \(\max_{M} \text{matching } \nu(M) = \min_{(C, D)} \text{support } \lambda(C, D). \)

Brief Outline of Proof of Theorems 1 and 2. First, it is easily seen that by means of an augmenting chain we can increase a given matching \(M, \) since by conditions (2) and (3) the sets

\[
A' = \left(A - \bigcup_{j=1}^{n} a_j \right) \cup \bigcup_{j=0}^{n} a'_j,
\]
\[
B' = \left(B - \bigcup_{j=1}^{n} b_j \right) \cup \bigcup_{j=1}^{n+1} b'_j
\]

are independent. Further, we clearly have \(\nu(M) \leq \lambda(C, D) \) for any matching \(M \) and any support \((C, D). \)

Assume now there is no augmenting chain with respect to \((A, B, f). \) Put \(C_0 = S - J(A), \) then \(R(C_0) \subseteq J(B). \) Let \(B_1 \) be the minimal subset of \(B \) such that \(R(C_0) \subseteq J(B_1), A_1 = f^{-1}(B_1) \) and \(C_1 = S - J(A - A_1). \) In general, having constructed \(C_{i-1}, \) we define \(B_i \) as the minimal subset of \(B \) such that \(R(C_{i-1}) \cap J(B) \subseteq J(B_i), \) and set \(A_i = f^{-1}(B_i) \) and \(C_i = S - J(A - A_i). \) This way we construct three monotonically increasing sequences of sets \(A_i, B_i, C_i \) and since all the \(B_i \)'s are contained in \(B, \) these sequences must terminate after a finite number of, say, \(m \) steps.

The crucial part of the argument consists in showing that \(R(C_n) \subseteq J(B) \) for all \(n = 0, \ldots, m. \) This is accomplished by disproving the opposite through construction of an augmenting chain with respect
to \(M \). Now since \(R(C_m) \subseteq J(B_m) \), i.e., \(R(S - J(A - A_m)) \subseteq J(B_m) \), we infer that \(J(A - A_m) \), \(J(B_m) \) constitutes a support with order equal to the size of \(M \). Thus \(M \) is a matching of maximum cardinality and the equality in Theorem 2 holds.

Corollary 1. For \(A \subseteq S \), define the deficiency of \(A \) as \(\delta_S(A) = r(S) - r(S - A) - r(R(A)) \), and let \(\delta_S = \max_{A \subseteq S} \delta_S(A) \). Then

\[
\max_{\text{matching } M} \nu(M) = \min_{(C, D) \text{ support}} \lambda(C, D) = r(S) - \delta_S.
\]

We have

\[
r(S) - \delta_S = r(S) - \max_{A \subseteq S} (r(S) - r(S - A) - r(R(A)))
\]

\[
= \min_{A \subseteq S} (r(S - A) + r(R(A))) = \min_{A \subseteq S} (r(A) + r(R(S - A))),
\]

and the minimum is clearly obtained by some closed set \(A \). But then \((A, J(R(S - A))) \) is a support for \((G(S), G(T), R) \) and the conclusion follows.

Corollary 2 (Generalized Marriage Theorem). Given \((G(S), G(T), R) \), then \(\max_{\text{matching } M} \nu(M) = r(S) \) if and only if \(r(S) - r(S - A) \leq r(R(A)) \) for all \(A \subseteq S \).

Corollary 3. Let \((A, B, f) \) be a matching in \((G(S), G(T), R) \) and suppose it is not of maximum size, then there exists a matching \((A', \cup a, B', \cup b, f') \) such that \(J(A') = J(A), J(B') = J(B) \), and \(a \in J(A'), b \in J(B') \).

This follows immediately from the definition of augmenting chains, part (3).

Corollary 4 (See also [2], [3], [4]). Given \((G(S), G(T), R) \), where \(G(S) \) is a free geometry. Define a new independence structure on \(S \) by calling \(A \subseteq S \) independent if and only if there exists a matching \((A, B, f) \) for some \(B \) and \(f \). This defines a pregeometry on \(S \), called the transversal pregeometry with respect to \((G(S), G(T), R) \).

Corollary 3 applied to \((G(S'), G(T), R \cap (S' \times T)) \) for \(S' \subseteq S \) shows that every independent subset \(A \subseteq S' \) as defined above can be embedded in one of maximum (and by Corollary 1, constant) size.

It should be remarked that Corollary 4 ceases to be true for arbitrary geometries \(G(S) \). The function \(r^* \) given by the definition of independent sets in Corollary 4 and by the formula in Corollary 1 as \(r^*(S') = r(S') - \delta_S \) for \(S' \subseteq S \) is unit-increasing, but fails to be semi-modular in general. For the same reason one cannot prove Theorem
2 along the lines suggested by Ore [5] although this approach works when $G(S)$ is a free geometry.

Acknowledgment. We would like to express our gratitude to Professor Rota who suggested this work to us during a series of lectures given at the University of North Carolina in the Spring 1969.

References

