IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Cauchy problems involving a small parameter


Author: Frank Hoppensteadt
Journal: Bull. Amer. Math. Soc. 76 (1970), 142-146
DOI: https://doi.org/10.1090/S0002-9904-1970-12404-1
MathSciNet review: 0249847
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. T. Kato, Nonlinear evolution equations in Banach spaces, Proc. Sympos. Appl. Math., vol. 17, Amer. Math. Soc. Providence, R. I., 1965, pp. 50-67. MR 32 #1573. MR 184099
  • 2. E. Hille and R. S. Phillips, Functional analysis and semigroups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc. Providence, R. I., 1957. MR 19, 664. MR 89373
  • 3. S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119-147. MR 26 #5288. MR 147774
  • 4. J. B. Keller, Lecture notes, Math. Dept., Michigan State University, East Lansing, Mich., 1968.
  • 5. A. B. Vasil'eva, Asymptotic behavior of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives, Uspehi Mat. Nauk 18 (1963), no. 3 (111), 15-86 = Russian Math. Surveys 18 (1963), 13-84. MR 28 #1363. MR 158137


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1970-12404-1

American Mathematical Society