Surfaces of vertical order 3 are tame

Authors:
R. A. Jensen and L. D. Loveland

Journal:
Bull. Amer. Math. Soc. **76** (1970), 151-154

MSC (1970):
Primary 5705; Secondary 5478

DOI:
https://doi.org/10.1090/S0002-9904-1970-12409-0

MathSciNet review:
0250281

Full-text PDF

References | Similar Articles | Additional Information

**1.**R. H. Bing,*Tame Cantor sets in E*^{3}, Pacific J. Math. 11 (1961), 435-446. MR 24 #A539. MR**130679****2.**R. H. Bing,*A surface is tame if its complement is*1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 24 #A1117. MR**131265****3.**R. H. Bing,*Improving the intersections of lines and surfaces*, Michigan Math. J. 14 (1967), 155-159. MR 34 #6743. MR**206927****4.**P. H. Doyle and J. G. Hocking,*Some results on tame disks and spheres in E*^{3}, Proc. Amer. Math. Soc. 11 (1960), 832-836. MR 23 #A4133. MR**126839****5.**R. H. Fox and E. Artin,*Some wild cells and spheres in three-dimensional space*, Ann. of Math. (2) 49 (1948), 979-990. MR 10, 317. MR**27512****6.**O. G. Harrold, Jr., H. C. Griffith and E. E. Posey,*A characterization of tame curves in*3-*space*, Trans. Amer. Math. Soc. 79 (1955), 12-34. MR 19, 972. MR**91457****7.**R. L. Moore,*Foundations of point set theory*, Amer. Math. Soc. Colloq. Publ., vol. 32, Amer. Math. Soc. Providence, R. I., 1949. MR**150722**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1970):
5705,
5478

Retrieve articles in all journals with MSC (1970): 5705, 5478

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1970-12409-0