REMARKS CONCERNING $\text{Ext}^\ast (M, -)$

BY D. H. VAN OSDOL

Communicated by Saunders MacLane, September 30, 1969

Let X be a topological space and let S (respectively α) be the category of sets (respectively abelian groups). Let S' (respectively α') be the category of sheaves of sets (respectively abelian groups) based on X, and fix a sheaf M in α'. The graded functor $\text{Ext}^\ast(M, -) : \alpha' \to \alpha$ is computed as the right derived functors of $\text{Hom}(M', -)$, and of course $\text{Ext}^i(M, N)$ classifies i-fold extensions of M by N [6].

One would also like to be able to classify extensions in nonabelian categories of sheaves. Partial success in this direction has been achieved by Gray [5], but he needs to assume restrictions on X as well as on M. In [10], the author applied triple-theoretic [1] techniques to the category of sheaves of R-algebras (R a sheaf of rings), and successfully classified cohomologically singular extensions of an R-algebra P by one of its modules N.

Specifically, if G is the polynomial algebra cotriple lifted to the category of sheaves of R-algebras, if T is the Godement triple = standard construction [3], and if $\text{Der}_R(P, N)$ is the abelian group of global R-derivations from P to N, then the equivalence classes of singular extensions of P by N are in one-one correspondence with the elements of the first homology group of the double complex $\text{Der}_R(G^*P, T^*N)$. In §11 of this note we prove that if G is the free abelian group cotriple lifted to α' then the nth homology group of the double complex $\text{Hom}(G^*M, T^*N)$ is naturally isomorphic to $\text{Ext}^n(M, N)$. The combination of this theorem and the results in [10] indicates a unified approach to the cohomological classification of extensions in many (algebraic) categories of sheaves.

In §1 one can find a theorem which is part of the folklore of triple-theoretic cohomology theory, but for which no straightforward proof appears in print. The theorem is: if an abelian category has an injective cogenerator and E is the model-induced triple then $\text{Ext}^\ast(M, N)$ and the homology of the complex $\text{Hom}(M, E^*N)$ are naturally isomorphic (note that E is not the triple used by Schafer in [8]).

AMS Subject Classifications. Primary 1820; Secondary 1455, 5532.

Key Words and Phrases. Sheaves of sets, sheaves of abelian groups, extensions, triple, cotriple, model-induced triple, homology, double complex.

1 Partially supported by NSF Grant GP 7506.
The essence of the proof of this theorem appears as a proposition in §I, and we use the proposition again in §II.

I. Ext*(M, −) is a triple-derived functor. In a number of places (e.g. [7], [4], [6]) one can find a proof of the fact that the category \(\mathcal{A}' \) has an injective cogenerator. Thus one can always find an injective resolution \(J^* \) for any sheaf \(N \) in \(\mathcal{A}' \), and \(\text{Ext}^n(M, N) \) is defined to be the \(n \)th homology group of the complex \(\text{Hom}(M, J^*) \).

On the other hand, if \(I \) is the injective cogenerator then we can define the “model-induced” triple \(E = (E, \eta, \mu) \) as follows. The functor \(E: \mathcal{A}' \to \mathcal{A}' \) is given by \(EN = \prod I \) where the product is taken over the set \(\text{Hom}(N, I) \). If we write \(\langle g \rangle: \prod I \to I \) for the coordinate projection corresponding to the map \(g \) in \(\text{Hom}(N, I) \) then the natural transformations \(\eta, \mu \) are given by \(\langle g \rangle \cdot \eta N = g \) and \(\langle g \rangle \cdot \mu N = \langle \langle g \rangle \rangle \). Then \((E, \eta, \mu) \) is a triple (see [1]). Moreover, since the product of injectives is injective, \(EN \) is injective for each \(N \). We have the complex

\[
N \to EN \to E^2N \to E^3N \to \cdots = E^*N
\]

where \(d: E^kN \to E^{k+1}N \) is \(d = \sum_{i=0}^k (-1)^i E^i \eta E^{k-i} N \), hence we can consider the homology of the complex \(\text{Hom}(M, EN) \to \text{Hom}(M, E^2N) \to \text{Hom}(M, E^3N) \to \cdots \). Denote the \(n \)th homology group of this complex by \(H^n(M, N)E \). Then we claim that \(H^n(M, N)E = \text{Ext}^n(M, N) \) for all \(n \geq 0 \).

Lemma. The map \(\eta N: N \to EN \) is a monomorphism.

Proof. If \(f, f': N \to N \) are such that \(\eta N \cdot f = \eta N \cdot f' \) then we must show that \(f = f' \). Now for each \(g: N \to I \) we have \(g \cdot f = \langle g \rangle \cdot \eta N \cdot f = \langle g \rangle \cdot \eta N \cdot f' = g \cdot f' \), and since \(I \) is a cogenerator, \(f = f' \).

The dual of the following proposition was shown to me by Michael Barr.

Proposition. If the abelian category \(\mathfrak{B} \) is endowed with a triple \(E \) such that \(\eta \) is pointwise monic then \(N \to E^*N \) is an exact sequence, and conversely.

Proof. The converse is obvious. On the other hand, if \(\eta N \) is monic for each \(N \) in \(\mathfrak{B} \) then we can build an exact sequence

\[
0 \to N \to EN \to EC_0 \to EC_1 \to EC_2 \to \cdots = I^*
\]

where \(C_{-1} = N \) and \(C_{i+1} \) is the cokernel of the map \(\eta C_i: C_i \to EC_i \) for each \(i \geq -1 \). Of course the boundary \(EC_i \to EC_{i+1} \) is the composition of the cokernel map \(c_{i+1}: EC_i \to C_{i+1} \) and \(\eta C_{i+1} \). If \(\mathfrak{E} \) is the injective
class determined by the image of E then any two \mathcal{E}-injective and \mathcal{E}-exact sequences are homotopic \cite{2}. Now $N \to E^*N$ is \mathcal{E}-injective and \mathcal{E}-exact. Moreover $N \to I^*$ is \mathcal{E}-injective, and we now show that it is also \mathcal{E}-exact, i.e. that for any N' we have $\text{Hom}(I^*, EN')$ is exact. Given a cocycle $f : EC_j \to EN'$ we have $0 = df = f \cdot \eta C_j \cdot c_j$ and c_j is epic, hence $f \cdot \eta C_j = 0$. But c_{j+1} is the cokernel of ηC_j and so there is a map $f' : C_{j+1} \to EN'$ such that $f' \cdot c_{j+1} = f$. Now the coboundary of $\mu N' \cdot Ef' : EC_{j+1} \to EN'$ is

$$d(\mu N' \cdot Ef') = \mu N' \cdot Ef' \cdot \eta C_{j+1} \cdot c_{j+1}$$
$$= \mu N' \cdot \eta EN' \cdot f' \cdot c_{j+1}$$
$$= f' \cdot c_{j+1}$$
$$= f.$$

Thus every cocycle is a coboundary, $\text{Hom}(I^*, EN')$ is exact, and I^* is \mathcal{E}-exact. It follows that I^* and E^*N are homotopic. But I^* is exact, hence so is E^*N.

Corollary. If E is the model-induced triple on \mathcal{A}' defined above then for each N in \mathcal{A}', $N \to E^*N$ is an injective resolution.

Corollary. $H^*(M, N)E \approx \text{Ext}^*(M, N)$.

Remark. The proof works for any abelian category having an injective cogenerator. Dually, if an abelian category has a projective generator and P is the model-induced cotriple then $H^*(M, N)P \approx \text{Ext}^*(M, N)$.

II. A double complex yielding $\text{Ext}^*(M, N)$. Consider the following diagram of categories and functors:

\[\begin{array}{c}
\text{S} & \xrightarrow{\alpha'} & \prod \alpha \\
\text{F} \downarrow & & \downarrow \prod F_s \\
\text{U} & \xrightarrow{Q} & \prod U_s \\
\text{s'} & \xrightarrow{Q} & \prod s
\end{array}\]

in which the products are taken over all points x in X. S is the stalk functor, i.e. S takes a sheaf to the set of its stalks. Q takes a collection $\{A_x\}$ to the sheaf whose value at an open set V is $\prod A_x$, the product being taken over all points x in V. U and $\prod U_x$ are the obvious "underlying" or "forgetful" functors. F_s is the free abelian group functor. Given a sheaf N in s', the functor which takes an open set V to the free abelian group on the set $N(V)$ is a presheaf of abelian groups, and FN is defined to be the sheaf associated to this presheaf.
One can show that S is left adjoint to Q, F is left adjoint to U, $\prod U_x$ is left adjoint to $\prod U_x S$, and $Q \prod U_x \approx UQ$. Moreover QS is the Godement “standard construction” (see [3]). Let $T = (T, \eta, \mu)$ be the triple associated to $QS = T$ and $G = (G, \epsilon, \delta)$ the cotriple associated to $FU = G$ via the adjointnesses. For each M in \mathcal{U} we get the complex
\[\cdots \rightarrow G^2M \rightarrow G^2M \rightarrow GM \rightarrow M \rightarrow 0 \]
dually to the way we got $N \rightarrow E*N$ in §1. For each N in \mathcal{U} we get the complex $0 \rightarrow N \rightarrow TN \rightarrow T^{1}N \rightarrow \cdots$ as in §1. Hence we have the double complex
\[C^{ij}(M, N) = \text{Hom} (G^{i+1}M, T^{j+1}N) \quad \text{for } i, j \geq 0 \]
with boundaries induced by the boundaries in the single complexes. Denote the nth homology group of this double complex by $H^n(M, N)_{G, T}$.

Theorem. $H^n(M, N)_{G, T} = \text{Ext}^n(M, N)$ for each $n \geq 0$.

Proof. It is well known (see [6] or [9]) that $\text{Ext}^*(M, -)$ is a cohomological δ-functor augmented over $\text{Hom}(M, -)$, and that any two such cohomological δ-functors are isomorphic. We thus verify that $H^*(M, -)_{G, T}$ is such a functor. For convenience we write $H^*(M, -)$ instead of $H^*(M, -)_{G, T}$.

Given an exact sequence $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ in \mathcal{U} we need to produce an exact triangle
\[H^*(M, N') \rightarrow H^*(M, N) \rightarrow H^*(M, N'') \rightarrow H^*(M, N'). \]
Now T is an exact functor [3] and $\text{Hom}(G^{i+1}M, -)$ is left exact for $i \geq 0$. Thus
\[0 \rightarrow \text{Hom} (G^{i+1}M, T^{j+1}N') \rightarrow \text{Hom} (G^{i+1}M, T^{j+1}N) \rightarrow \text{Hom} (G^{i+1}M, T^{j+1}N'') \]
is exact for each $i, j \geq 0$. Moreover, the last map is onto, for consider the chain of natural isomorphisms:
\[\text{Hom} (G^{i+1}M, T^{j+1}N) \approx \text{Hom} (UG^iM, UT^{j+1}N) \approx \text{Hom} (UG^iM, Q \prod U_x (SQ)^jSN) \approx \text{Hom} (SUG^iM, \prod U_x (SQ)^jSN) \approx \text{Hom} (SUG^iM, (SQ)^j \prod U_x SN). \]
Since $N \rightarrow N''$ is epic, so is $SN \rightarrow SN''$ (see [3]) and thus $\prod U_x SN \rightarrow \prod U_x SN''$ is a split epimorphism. Hence
\[\text{Hom}(SUG^iM, (SQ)_j \prod U \omega SN) \rightarrow \text{Hom}(SUG^iM, (SQ)_j \prod U \omega SN") \]

is onto. But this map is naturally isomorphic to
\[\text{Hom}(G^{i+1}M, T^{i+1}N) \rightarrow \text{Hom}(G^{i+1}M, T^{i+1}N") \]

which is therefore onto.

It follows that \(0 \rightarrow C^{i+j}(M, N') \rightarrow C^{i+j}(M, N) \rightarrow C^{i+j}(M, N") \rightarrow 0 \) is exact for each \(i, j \geq 0 \) and that \(0 \rightarrow C^{**}(M, N') \rightarrow C^{**}(M, N) \rightarrow C^{**}(M, N") \rightarrow 0 \) is an exact sequence of double complexes. The exact homology triangle is now a standard result of homological algebra. Hence \(H^*(M, -) \) is an exact \(\delta \)-functor.

The proof is completed by showing that \(H^*(M, -) \) is augmented over \(\text{Hom}(M, -) \) and that \(H^n(M, -) \) is effaceable for each \(n > 0 \). First, \(H^0(M, N) \) is the intersection of the kernels of the two maps \(C^0_0(M, N) \rightarrow C^0_1(M, N) \) and \(C^0_0(M, N) \rightarrow C^1_0(M, N) \). Now \(\epsilon M: GM \rightarrow M \) is an epimorphism (essentially because the associated sheaf functor is exact) and \(\eta N: N \rightarrow TN \) is a monomorphism \([3]\]. Hence by the proposition in §1 and its dual, \(N \rightarrow T^*N \) and \(G^*M \rightarrow M \) are exact sequences. But \(\text{Hom}(-, -) \) is left exact and thus
\[
\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow \text{Hom}(M, N) & \rightarrow \text{Hom}(GM, N) & \rightarrow \text{Hom}(G^2M, N) \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow \text{Hom}(M, TN) & \rightarrow \text{Hom}(GM, TN) & \rightarrow \text{Hom}(G^2M, TN) \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow \text{Hom}(M, T^2N) & \rightarrow \text{Hom}(GM, T^2N) & \\
\end{array}
\]

is exact. This implies that \(H^0(M, N) \approx \text{Hom}(M, N) \) and \(H^*(M, -) \) is augmented over \(\text{Hom}(M, -) \).

Finally, to demonstrate the effaceability, let \(N \) be injective in \(\mathcal{A}' \). Then \(\eta N: N \rightarrow TN \) is a split monomorphism, say \(u \cdot \eta N = N \). As is shown in \([1]\], the maps \(T^j u \) provide a contraction of the complex \(0 \rightarrow N \rightarrow T^*N \). Thus for each \(j \geq -1 \) the column \(C^j(M, N) \) is exact and has zero homology. It follows that the total homology of \(C^{**}(M, N) \) vanishes in positive dimensions, that is, \(H^n(M, N) = 0 \) if \(n > 0 \) and if \(N \) is injective. Hence \(H^n(M, -) \) is effaceable for \(n > 0 \). This completes the proof of the fact that \(H^*(M, -) \) is a cohomological \(\delta \)-functor augmented over \(\text{Hom}(M, -) \), which was to be shown.

References

Wilkes College, Wilkes-Barre, Pennsylvania 18703