Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Hermitian bilinear forms which are not semibounded


Author: Alan McIntosh
Journal: Bull. Amer. Math. Soc. 76 (1970), 732-737
MSC (1970): Primary 4710; Secondary 4615
DOI: https://doi.org/10.1090/S0002-9904-1970-12526-5
MathSciNet review: 0261373
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. Dunford and J. Schwartz, Linear operators. II: Spectral theory. Self adjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181. MR 188745
  • 2. Ju.P. Ginzburg and I. S. Iohvidov, A study of the geometry of infinite-dimensional spaces with bilinear metric, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 3-56 = Russian Math. Surveys 17 (1962), no. 4, 1-51. MR 26 #2850. MR 145319
  • 3. T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad. 37 (1961), 305-308. MR 26 #2876. MR 145345
  • 4. T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 203473
  • 5. A. Mcintosh, Bilinear forms in Hilbert space, J. Math. Mech. 19 (1970). MR 261392
  • 6. R. S. Phillips, On dissipative operators, An AFOSR Scientific Report, Lecture Series in Differential Equations, Session 6, Georgetown University, 1966.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 4710, 4615

Retrieve articles in all journals with MSC (1970): 4710, 4615


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1970-12526-5

American Mathematical Society