ON THE SEMISIMPLICITY OF INTEGRAL REPRESENTATION RINGS

BY JANICE ZEMANEK

Communicated by Irving Reiner, November 10, 1969

For a finite group G and a ring R, define the integral representation ring $\mathcal{A}(RG)$ as the abelian group generated by the isomorphism classes of RG-lattices, with

$$[M] + [M'] = [M \oplus M'],$$

and

$$[M][M'] = [M \otimes_R M'].$$

The integral representation algebra $\mathcal{A}(RG)$ is $C \otimes_R \mathcal{A}(RG)$. When does $\mathcal{A}(RG)$ contain nontrivial nilpotent elements?

Let $|G| = p^a n$, where $p \nmid n$, p prime. Denote by Z_p the p-adic valuation ring in \mathbb{Q}, and by Z_p^* its completion. Reiner has shown

(i) If $\alpha = 1$, then $\mathcal{A}(Z_pG)$ and $\mathcal{A}(Z_p^*G)$ have no nonzero nilpotent elements (see [1]).

(ii) If $\alpha \geq 2$, and G has an element of order p^2, then both $\mathcal{A}(Z_pG)$ and $\mathcal{A}(Z_p^*G)$ contain nonzero nilpotent elements (see [2]).

We have been able to settle the open case as to what happens when G has a (p, ℓ)-subgroup. Our main result is

Theorem 1. Whenever $\alpha > 1$, both $\mathcal{A}(Z_pG)$ and $\mathcal{A}(Z_p^*G)$ contain nonzero nilpotent elements.

As a matter of fact, the construction used shows

Theorem 2. If $|G|$ is not squarefree, then $\mathcal{A}(ZG)$ and $\mathcal{A}(Z'^G)$ contain nonzero nilpotent elements, where

$$Z' = \{ a/b : a, b \in Z, b \text{ coprime to } |G| \}.$$

In the other direction, Reiner proved

(iii) If $|G|$ is squarefree, then $\mathcal{A}(Z'G)$ has no nonzero nilpotent elements (see [1]).

AMS Subject Classifications. Primary 1640; Secondary 1644.

Key Words and Phrases. Integral representation rings, nilpotent elements.
All of our results generalize to the case where \mathbb{Z} is replaced by the ring of algebraic integers in an algebraic number field.

As a consequence of Theorem 1, we have Theorem 3. Let k be a field of characteristic p, p an odd prime. If G has a noncyclic p-Sylow subgroup, $a(kG)$ contains nonzero nilpotent elements.

References

University of Illinois, Urbana, Illinois 61801