TWO NEW H-SPACES

BY MORTON CURTIS1 AND GUIDO MISLIN2

Communicated November 24, 1969

It is the purpose of this note to announce the following result.

Theorem. (i) The total space of any principal $SU(3)$ bundle over S^7 is an H-space.

(ii) There are exactly four homotopy types of such total spaces.

Two of these homotopy types are known H-spaces; namely, $SU(3) \times S^7$ and $SU(4)$. The other two are the new H-spaces of the title, and a word is in order as to in what sense they are new.

If one seeks differentiable manifolds which are H-spaces not homeomorphic to known H-spaces, then recent work of Belfi [1] and Morgan [4] furnish a big supply. For example, there are infinitely many nonhomeomorphic manifolds having the homotopy type of $SU(4)$ (and hence being H-spaces). If one seeks new homotopy types (excluding, of course, cartesian products of known ones) the picture is quite different. Classically one knew only S^7 and its projective space P^7, except for Lie groups. In 1968 Hilton and Roitberg [2], [3] discovered a new H-space, a principal S^9 bundle over S^7. In 1969 Stasheff [5] found two more new H-spaces among the seven homotopy types of principal S^9 bundles over S^7. Our two new spaces brings the known total to seven in dimension ≤ 15. We have also shown that the three new homotopy types introduced by going from principal S^9 bundles over S^7 to $SO(4)$ 3-sphere bundles over S^7 are not H-spaces.

The first part of our theorem is proved using the technique of mixing homotopy types (relative to a subdivision of the set of prime numbers) due to Zabrodsky [7], in much the same manner as Stasheff [5]. The second part uses the Adams operations in K-theory and a result of Suter [6] to distinguish the homotopy types.

REFERENCES

Key Words and Phrases. H-space, homotopy type.

1 Research partially supported by NSF Grant No. GP12715.

2 Research supported by the Schweizerischer Nationalfonds.

8 By using [7] and a theorem of W. Browder, Zabrodsky gets infinitely many H-manifolds in higher dimensions. Recently Roitberg has used [7] to obtain some new 14-dimensional H-manifolds.

851

Rice University, Houston, Texas 77001

University of California, Berkeley, California 94720