Let K be an algebraically closed field of prime characteristic p.

By a classical Lie algebra over K we shall understand a Lie algebra \mathfrak{g} obtained from a complex simple Lie algebra \mathfrak{g}_C by the well-known procedure of Chevalley: see [7] [1], for example. In this note we announce some results on the representation theory of \mathfrak{g} over K; proofs will appear elsewhere. All modules considered will be finite-dimensional and restricted, unless otherwise specified.

0. Preliminaries. Denote by Σ the root system of \mathfrak{g}_C relative to a Cartan subalgebra, and let $\Pi = \{\alpha_1, \ldots, \alpha_I\}$ be a simple system. Fix a Chevalley basis $\{X\alpha, \alpha \in \Sigma; H_i, 1 \leq i \leq I\}$ of \mathfrak{g}_C; if \mathfrak{g}_Z is the \mathbb{Z}-span of this basis, then $\mathfrak{g} = \mathfrak{g}_Z \otimes \mathbb{K}$. For convenience, we also denote by $X\alpha$, H_i the corresponding elements of \mathfrak{g}. Write $\mathfrak{h} = \mathfrak{h}_Z \otimes \mathbb{K}$ (the \mathbb{Z}-span of the H_i in \mathfrak{g}). Kostant’s theorem [7, §2] describes the \mathbb{Z}-form \mathfrak{u}_Z of the universal enveloping algebra of \mathfrak{g}_C generated by all $X\alpha/m!$ ($\alpha \in \Sigma$, $m \geq 0$).

If we let V_λ be the irreducible \mathfrak{g}_C-module of highest weight λ, and let $v_0 \in V_\lambda$ be a maximal vector (a nonzero vector annihilated by all $X\alpha$, $\alpha \in \Pi$), then $\mathfrak{u}_Z v_0$ is an “admissible lattice.” Tensoring with \mathbb{K} yields a (restricted) \mathfrak{g}-module V_λ, which is also a module for the simply connected Chevalley group G constructed from \mathfrak{g}_C over K. If v_0 again denotes the maximal vector $v_0 \otimes 1$ in V_λ, then v_0 has weight λ.

Let Λ denote the collection of p^i restricted weights λ characterized by the conditions $0 \leq \lambda(H_i) < p$, $1 \leq i \leq l$. For each $\lambda \in \Lambda$ let M_λ be the irreducible \mathfrak{g}-module of highest weight λ; it is known that M_λ is a homomorphic, but not always isomorphic, image of V_λ. The collection $\mathfrak{M} = \{M_\lambda | \lambda \in \Lambda\}$ exhausts the (isomorphism classes of) irreducible \mathfrak{g}-modules. Let \mathfrak{u}, \mathfrak{g} be the restricted universal enveloping algebras of \mathfrak{g}, \mathfrak{h} over K (\mathbb{Z}-algebras). (Left) \mathfrak{u}-modules correspond precisely to restricted (left) \mathfrak{g}-modules. Every \mathfrak{u}-algebra is a Frobenius algebra, and \mathfrak{u} is even symmetric.
1. Standard cyclic modules and characters.

DEFINITION. A cyclic g-module, generated by a maximal vector (of weight λ), will be called standard cyclic (of weight λ).

Proposition 1. If $\lambda \in \Lambda$, the g-module V_λ is standard cyclic of weight λ.

Proposition 2 (Braden). A standard cyclic g-module (restricted or not) is indecomposable and possesses a unique maximal submodule.

In characteristic 0 the “most general” standard cyclic module for $g_\mathbb{C}$ is always infinite-dimensional [6], [8], [9]. Here we consider the analogue for g. If $\{\beta_1, \ldots, \beta_m\}$ is the set of positive roots (relative to Π), let X_1, \ldots, X_m and Y_1, \ldots, Y_m be the corresponding X_{β_i} and $X_{-\beta_i}$, respectively. Let \mathfrak{h}, \mathfrak{n}' be the subalgebras of g spanned by the X_i, Y_i respectively, and let \mathfrak{g}, \mathfrak{k}' be their u-algebras. If $\lambda \in \Lambda$, denote by L_λ the left ideal in \mathfrak{u} generated by all $X_i (1 \leq i \leq m)$ and all $H_i - \lambda(H_i) \cdot 1$ $(1 \leq i \leq l)$. Set $Z_\lambda = \mathfrak{u}/L_\lambda$. The canonical map $\mathfrak{u} \to Z_\lambda$ induces a vector space isomorphism of \mathfrak{g}' onto Z_λ: indeed, the coset of 1 in Z_λ is a maximal vector of weight λ, forcing $\dim Z_\lambda \geq p^m = \dim \mathfrak{g}'$, and on the other hand one can verify that $\mathfrak{g}' \cap L_\lambda = 0$. Moreover, any standard cyclic g-module of weight λ is a homomorphic image of this “universal” one.

Next we introduce certain “characters” analogous to those of Harish-Chandra [6, Exposé 19]. Let \mathfrak{c} be the center of \mathfrak{u}. Since Z_λ is indecomposable (Proposition 2), Fitting’s Lemma allows one to show that each $C \in \mathfrak{c}$ acts as a scalar plus a nilpotent; in particular, the function $\chi_\lambda: \mathfrak{c} \to K$ assigning to C its single eigenvalue on Z_λ, is a homomorphism of K-algebras. Moreover, $\chi_\lambda(C)$ is the single eigenvalue of C on any subhomomorphic image of Z_λ, from which we deduce:

Proposition 3. $\chi_\lambda = \chi_\mu$ if M_λ, M_μ occur as composition factors of some standard cyclic g-module.

2. Linked weights and blocks.

Definition. Let W be the Weyl group of $g_\mathbb{C}$, $\rho =$ half-sum of positive roots. If $\lambda, \mu \in \Lambda$, viewed as functions on \mathfrak{h}, satisfy: $\lambda + \rho = (\mu + \rho)^\sigma$ for some $\sigma \in W$, then we say λ and μ are linked and write $\lambda \sim \mu$.

It is clear that linkage is an equivalence relation on Λ, since $(\lambda_\sigma)_\sigma = \lambda_{\tau_\sigma}$, where we write $\lambda_\sigma = (\lambda + \rho)^\sigma - \rho$. There is always a linkage class having only one member: take $\lambda = (\rho - 1)\rho$; this weight yields the “Steinberg module” $M_\lambda = V_\lambda = Z_\lambda$, the unique irreducible g-module of maximal dimension p^m. The condition $\lambda \sim \mu$ is analogous to Harish-
Chandra's condition for equality of "characters" in the infinite-dimensional case [6, Exposé 19].

Theorem 1. \(\lambda \sim \mu \) implies \(\chi_\lambda = \chi_\mu \).

Although a precise description of the submodules of \(Z_\lambda \) is lacking, the following can be shown.

Proposition 4. \(\lambda \sim \mu \) implies that \(Z_\lambda \) and \(Z_\mu \) have the same composition factors (multiplicities counted). Up to scalar multiples, \(Z_\lambda \) has a unique minimal vector, namely, the coset of \(Y_1^{-1} \cdots Y_m^{-1} \) (for any ordering of \(Y_1, \cdots, Y_m \)).

The linkage class of \(\lambda \) is in 1-1 correspondence with the \(W \)-orbit of \(\lambda + \rho \) in \(\Lambda \), so Theorem 1 shows there are no more characters than orbits. We can relate this to the blocks of \(\mathfrak{u} \) as well [4, §55]. The distinct (left) principal indecomposable modules (PIM's) of \(\mathfrak{u} \) correspond 1-1 with the elements of \(\mathfrak{A} \): The PIM \(U_\lambda \) has unique highest composition factor \(M_\lambda \). Two PIM's are said to be "linked" if they share a composition factor, and the sum of all PIM's in a class of this equivalence relation is an indecomposable two-sided ideal of \(\mathfrak{u} \), called a "block." Let \(B_\lambda \) be the block containing \(U_\lambda \). It is easy to see that (under the canonical map \(\mathfrak{u} \rightarrow Z_\lambda \)) some copy of \(U_\lambda \) maps onto \(Z_\lambda \), whence every composition factor of \(Z_\lambda \) belongs to the block \(B_\lambda \). In view of Theorem 1 and Proposition 4, we can state:

Theorem 1'. \(\lambda \sim \mu \) implies \(U_\lambda \) and \(U_\mu \) are linked (so \(B_\lambda = B_\mu \)).

This shows that the number \(t \) of distinct blocks does not exceed the number of \(W \)-orbits in \(\Lambda \) (and each block corresponds to a union of such orbits). Moreover, \(t = \dim(\mathfrak{C}/(\mathfrak{C} \cap \mathfrak{R})) \), and the \(\chi_\lambda \) coincide with the homomorphisms \(\mathfrak{C} \rightarrow K \) defined by the respective block idempotents [4, §85 and references].

3. **Invariants.** In order to prove the converse of Theorem 1 (under some restriction on \(\rho \)) it is necessary to examine more closely how \(\mathfrak{C} \) acts on \(Z_\lambda \). There is a natural \(K \)-linear map \(\beta: \mathfrak{U} \otimes \mathfrak{C} \otimes \mathfrak{C} \rightarrow \mathfrak{C} \) defined by \(\beta(YHX) = 0 \) if \(Y \) or \(X \) is not 1, \(\beta(YHX) = H \) if \(Y = X = 1 \) \((Y \in \mathfrak{U}, H \in \mathfrak{C}, X \in \mathfrak{C} \) standard basis monomials). If \(\lambda \in \Lambda \) is viewed as a \(K \)-algebra homomorphism \(\mathfrak{C} \rightarrow K \), then in view of the way \(\chi_\lambda \) was defined, we have \(\chi_\lambda (C) = \lambda(\beta(C)) \), \(C \in \mathfrak{C} \), and moreover, \(\beta | \mathfrak{C} \) is multiplicative. Let \(\gamma \) be the \(K \)-algebra automorphism of \(\mathfrak{C} \) sending \(H_i \) to \(H_i - \rho(H_i) \) (\(\rho \) as before). Then Theorem 1 implies that \(\gamma(\beta(C)) \) lies in \(\mathfrak{C}^{W} \) (= algebra of \(W \)-invariants in \(\mathfrak{C} \)), so \(\dim \mathfrak{C}^{W} = t' \geq t \). Now \(\mathfrak{C}^{W} \) is a commutative semisimple associative algebra, and the corresponding \(t' \) \(K \)-algebra homomorphisms \(\mathfrak{C}^{W} \rightarrow K \) are just the restric-
tions to \mathfrak{C}^W of the $\lambda \in \Lambda$, those which are W-conjugate having the same restriction (so $t' =$ number of W-orbits in Λ). To prove the converse of Theorem 1, it would suffice to prove that $t = t'$, or that $\gamma(\beta(C)) = 3\mathfrak{C}^W$. This seems likely to hold in general, but our method, based on reduction mod p, does not work for “small” p.

Theorem 2. If $p > \text{Coxeter number of } \Sigma$, then $\chi_\lambda = \chi_\mu$ implies $\lambda \sim \mu$.

Remark. The Coxeter number h (=order of the product of all simple reflections in W) for each of the simple types is as follows [2, pp. 250–275]: A_l, $l+1$; B_l, C_l, $2l$; D_l, $2l-2$; E_6, 12; E_7, 18; E_8, 30; F_4, 12; G_2, 6. If $p > h$, p does not divide the order of W.

4. **Projective modules.** We recall [4, §56] that the projective \mathfrak{U}-modules are just the direct sums of the PIM's (which are the only indecomposable projectives). It is easy to see that if M is indecomposable and $P \rightarrow M \rightarrow 0$ is a projective cover, then a sum of PIM’s from the same block already maps onto M. Since every \mathfrak{U}-module has a projective cover, we deduce from Theorem 2:

Theorem 3. If $p > h$, then if M is an indecomposable \mathfrak{U}-module, all composition factors of M have highest weights which are linked.

This has been conjectured in general by Verma; Pollack’s study of type A_l confirms the result directly [5], and Braden’s conclusions [3] are highly consistent with it.

In [5] Pollack describes the PIM’s for A_l explicitly. For higher ranks we get some analogous results, the first of which resembles a classical theorem on group algebras of finite groups [4, 65.17].

Proposition 5. Every projective \mathfrak{U}-module is projective as \mathfrak{U}'-module; in particular, each PIM of \mathfrak{U} has dimension divisible by p^m ($m =$ number of positive roots).

Proposition 6. If \mathfrak{B}' is the subalgebra of \mathfrak{U} generated by \mathfrak{C} and \mathfrak{B}', then every projective \mathfrak{U}-module is a projective \mathfrak{B}'-module. The PIM’s of \mathfrak{B}' are just the p^t modules Z_λ ($\lambda \in \Lambda$) regarded as \mathfrak{B}'-modules.

The proof of Proposition 6 is a direct construction in \mathfrak{U}. Using this result, along with Proposition 4, one can get precise information about dimensions.

Theorem 4. Let C be the Cartan matrix of \mathfrak{U} $(c_{\mu \nu} =$ multiplicity of M_μ as composition factor of U_ν), and let D be the matrix $(d_{\lambda \mu})$, where $d_{\lambda \mu} =$ multiplicity of M_μ as a composition factor of Z_λ. Whenever the
conclusion of Theorem 3 is valid, \(C = D \cdot D \), \(\dim U_\lambda = a_\lambda d^\lambda p^m \) and \(\dim B_\lambda = a_\lambda p^{2m} \), where \(a_\lambda \) = cardinality of \(W \)-orbit of \(\lambda + \rho \) in \(\Lambda \).

References

7. R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. (mimeograph)

University of Oregon, Eugene, Oregon 97403

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012