Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Free boundary problems for parabolic equations


Author: Avner Friedman
Journal: Bull. Amer. Math. Soc. 76 (1970), 934-941
MSC (1970): Primary 3562, 3578
DOI: https://doi.org/10.1090/S0002-9904-1970-12508-3
MathSciNet review: 0280881
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31 #6062. MR 181836
  • 2. L. I. Rubinšteĭn, Stefan problem, "Zvaĭgzne", Riga, 1967. (Russian) MR 36 #5488. MR 222436
  • 3. J. R. Cannon and C. D. Hill, Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation, J. Math. Mech. 17 (1967), 1-20. MR 270000
  • 4. J. R. Cannon and J. Douglas, The stability of the boundary in a Stefan problem, Ann. Scuola Norm. Sup. Pisa 21 (1967), 83-91. MR 269998
  • 5. J. R. Cannon and C. D. Hill, Remarks on a Stefan problem, J. Math. Mech. 17 (1967), 433-441. MR 36 #1854. MR 218770
  • 6. J. R. Cannon, J. Douglas and C. D. Hill, A multi-boundary Stefan problem and the disappearance of phases, J. Math. Mech. 17 (1967), 21-34. MR 269999
  • 7. J. R. Cannon and C. D. Hill, On the infinite differentiability of the free boundary in a Stefan boundary, J. Math. Anal. Appl. 22 (1968), 385-397. MR 37 #610. MR 225013
  • 8. B. Sherman, A free boundary problem for the heat equation with prescribed flux at both fixed face and melting interface, Quart. Appl. Math. 25 (1967), 53-63. MR 35 #3969. MR 213104
  • 9. B. Sherman, Continuous dependence and differentiability properties of the solution of a free boundary problem for the heat equation, Quart. Appl. Math. 27 (1970), 427-439. MR 509051
  • 10. J. M. Greenberg, A free boundary problem for the linear heat equation, J. Differential Equations 7 (1970), 287-306. MR 264245
  • 11. W. T. Kyner, An existence and uniqueness theorem for a nonlinear Stefan problem, J. Math. Mech. 8 (1959), 483-498. MR 26 #1630. MR 144082
  • 12. A. Friedman, Free boundary problems for parabolic equations. I: Melting of solids, J. Math. Mech. 8 (1959), 499-517. MR 26 #1626. MR 144078
  • 13. L. I. Rubinšteĭn, The two-phase Stefan problem on an interval with one-phase initial state of a heat-conducting medium, Latvijas valsts Univ. Zinātn. Raksti 58 (1964), no. 2, 111-148. (Russian) MR 31 #6066. MR 181840
  • 14. A. Friedman, Remarks on Stefan-type free boundary problems for parabolic equations, J. Math. Mech. 9 (1960), 885-903. MR 26 #1629. MR 144081
  • 15. A. Friedman, One dimensional Stefan problems with nonmonotone free boundary, Trans. Amer. Math. Soc. 133 (1968), 89-114. MR 37 #3210. MR 227626
  • 16. A. Friedman, Free boundary problems for parabolic equations. II: Evaporation or condensation of a liquid drop, J. Math. Mech. 9 (1960), 19-66. MR 26 #1627. MR 144079
  • 17. A. Friedman, Free boundary problems for parabolic equations. III: Dissolution of a gas bubble in liquid, J. Math. Mech. 9 (1960), 327-345. MR 26 #1628. MR 144080
  • 18. S. N. Kružkov, On some problems with unknown boundaries for the heat conduction equation, Prikl. Mat. Meh. 31 (1967), 1009-1020=J. Appl. Math. Mech. 31 (1967), 1014-1024. MR 37 #6618. MR 231063
  • 19. W. Fulks and R. B. Guenther, A free boundary problem and an extension of Muskat model, Acta Math. 122 (1969), 273-300. MR 245253
  • 20. S. L. Kamenomostskaja, On Stefan's problem, Mat. Sb. 53 (95) (1961), 489-514. (Russian) MR 25 #5292. MR 141895
  • 21. A. Friedman, The Stefan problem in several space variables, Trans. Amer. Math. Soc. 133 (1968), 51-87; Correction, 142 (1969), 557. MR 37 #3209. MR 227625

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 3562, 3578

Retrieve articles in all journals with MSC (1970): 3562, 3578


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1970-12508-3

American Mathematical Society