Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

A class of perfect determinantal ideals


Authors: M. Hochster and John A. Eagon
Journal: Bull. Amer. Math. Soc. 76 (1970), 1026-1029
MSC (1970): Primary 13H10, 13D05; Secondary 14L10
Erratum, Volume 76: Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 1120--1120
MathSciNet review: 0266912
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. David A. Buchsbaum and Dock S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197–224. MR 0159860, 10.1090/S0002-9947-1964-0159860-7
  • 2. J. A. Eagon, Ideals generated by the subdeterminants of a matrix. Thesis, University of Chicago, Chicago, III., 1961.
  • 3. John A. Eagon, Examples of Cohen-Macauley rings which are not Gorenstein, Math. Z. 109 (1969), 109–111. MR 0244235
  • 4. J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them., Proc. Roy. Soc. Ser. A 269 (1962), 188–204. MR 0142592
  • 5. J. A. Eagon and D. G. Northcott, Generically acyclic complexes and generically perfect ideals, Proc. Roy. Soc. Ser. A 299 (1967), 147–172. MR 0214586
  • 6. John Fogarty, Invariant theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0240104
  • 7. M. Hochster, Generically perfect modules are strongly generically perfect, Proc. London Math. Soc. (3) 23 (1971), 477–488. MR 0301002
  • 8. M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 0302643
  • 9. Irving Kaplansky, 𝑅-sequences and homological dimension, Nagoya Math. J. 20 (1962), 195–199. MR 0175955
  • 10. F. S. Macaulay, The algebraic theory of modular systems, Cambridge Tracts, 19 (1916).
  • 11. David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602
  • 12. D. G. Northcott, Semi-regular rings and semi-regular ideals, Quart. J. Math. Oxford Ser. (2) 11 (1960), 81–104. MR 0114835
  • 13. D. G. Northcott, Some remarks on the theory of ideals defined by matrices, Quart. J. Math. Oxford Ser. (2) 14 (1963), 193–204. MR 0151482
  • 14. D. G. Northcott, Generic perfection, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971) Academic Press, London, 1973, pp. 105–120. MR 0340237
  • 15. D. Rees, The grade of an ideal or module, Proc. Cambridge Philos. Soc. 53 (1957), 28–42. MR 0082967
  • 16. T. G. Room, The geometry of determinantal loci, Cambridge Univ. Press, Cambridge, 1938.
  • 17. D. W. Sharpe, On certain polynomial ideals defined by matrices, Quart. J. Math. Oxford Ser. (2) 15 (1964), 155–175. MR 0163927
  • 18. D. W. Sharpe, The syzygies and semi-regularity of certain ideals defined by matrices, Proc. London Math. Soc. (3) 15 (1965), 645–679. MR 0188245
  • 19. Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 13H10, 13D05, 14L10

Retrieve articles in all journals with MSC (1970): 13H10, 13D05, 14L10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1970-12543-5