Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Polytopes, graphs, and complexes


Author: Branko Grünbaum
Journal: Bull. Amer. Math. Soc. 76 (1970), 1131-1201
MSC (1970): Primary 52A25, 52A40; Secondary 05C10, 05C30, 05C35, 05C99, 28A75, 41A63, 50B15, 50B25, 50D25, 52A20, 53C65, 55A15, 55A20, 55B99, 57A35, 57A99, 90C99, 94A10, 94A20
DOI: https://doi.org/10.1090/S0002-9904-1970-12601-5
MathSciNet review: 0266050
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • G. L. Alexanderson and J. E. Wetsel, 1970. Dissection of a tetrahedron, [p. 1171]
  • C. B. Allendoerfer and A. Weil, 1943. The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101-129. MR 4, 169. [p. 1162] MR 7627
  • A. Altshuler, 1969. Polyhedral realizations in R 2-manifolds in convex 4-polytopes, Ph.D. Thesis, Hebrew University, Jerusalem, 1969. (Hebrew) [p. 1138]
  • A. Altshuler, 1970. Lattice characterization of convex 3-polytopes and of polygonizations of 2-manifolds, Israel J. Math. 8 (1970), 57-64. [p. 1183] MR 263067
  • D. D. Ang, D. E. Daykin and T. K. Sheng, 1969. On Schoenberg's rational polygon problem, J. Austral. Math. Soc. 9 (1969), 337-344. MR39#6816. [p. 1181] MR 245510
  • Anonymous, 1964. Programma van jaarlijkse Prijsvragen, Nieuw Arch. Wisk. (3) 12 (1964), 60-65. [p. 1142]
  • M. L. Balinski, 1961. On the graph structure of convex polyhedra in n-space, Pacific J. Math. 11 (1961), 431-434. MR 23 #A4059. [p. 1134] MR 126765
  • T. Banchoff, 1967. Critical points and curvature for embedded polyhedra, J. Differential Geometry 1 (1967), 245-256. MR 37 #921. [p. 1159, p. 1162] MR 225327
  • R. Bantegnie, 1965. Espaces de formes affines, C. R. Acad. Sci. Paris 261 (1965), 2554-2556. MR 32 #4677. [p. 1163] MR 187224
  • D. W. Barnette, 1966. Trees in polyhedral graphs, Canad. J. Math. 18 (1966), 731-736. MR 33 #3951. [p. 1147] MR 195753
  • D. W. Barnette, 1967. A necessary condition for d-polyhedrality, Pacific J. Math. 23 (1967), 435-440. MR 36 #1353. [p. 1135] MR 218266
  • D. W. Barnette, 1969a. On p-vectors of 3-polytopes, J. Combinatorial Theory 7 (1969), 99-103. MR 39 #6165. [p. ll41] MR 244851
  • D. W. Barnette, 1969b. A simple 4-dimensional nonfacet, Israel J. Math. 7 (1969), 16-20. MR 39 #4745. [p. 1146, p. 1611] MR 243423
  • D. W. Barnette, 1970a. A completely unambiguous 5-polyhedral graph, J. Combinatorial Theory 9 (1970), 44-53. [p. 1136] MR 270967
  • D. W. Barnette, 1970b. Diagrams and Schlegel diagrams, Combinatorial Structures and their Applications, Gordon and Breach, New York, pp. 1-4. [p. 1137, p. 1156, p. 1182] MR 270266
  • D. W. Barnette, 1970c. The graphs of polytopes with involutory automorphisms, Israel J. Math, (to appear), [p. 1139] MR 281100
  • D. W. Barnette, 1970d. Projections of 3-polytopes, Israel J. Math. 8 (1970), 304-308. [p. 1139] MR 262923
  • D. W. Barnette, 1970e. On the enumeration of combinatorial spheres and triangulations of the 3-sphere (to appear), [p. 1137, p. 1182]
  • D. W. Barnette, 1970f. The sum of the solid angles of a d-polytope. (to appear) [p. 1184]
  • D. W. Barnette and B. Grünbaum, 1969. On Steinitz's theorem concerning convex 3-polytopes and on some properties of 3-connected graphs, Lecture Notes in Math., vol. 110, Springer-Verlag, Berlin, 1969, pp. 27-40. [p. 1137] MR 250916
  • D. W. Barnette and B. Grünbaum, 1970. Preassigning the shape of a face, Pacific J. Math. 32 (1970), 299-306. [p. 1139] MR 259744
  • D. W. Barnette and E. Jucovič, 1970. Hamiltonian circuits on 3-polytopes, J. Combinatorial Theory 9 (1970), 54-59. [p. 1145] MR 269542
  • D. Barnette, E. Jucovič and M. Trenkler, 1970. Toroidal maps with prescribed types of vertices and faces, (to appear), [p. 1183] MR 288048
  • D. W. Barnette and G. Wegner, 1970. A 3-sphere that is not 4-polyhedral (to appear), [p. 1137, p. 1156, p. 1182]
  • C. Berg, 1969a. Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk.37 (1969), no. 6. [p. 1163] MR 254789
  • C. Berg, 1969b. Abstract Steiner points for convex polytopes, Copenhagen University Math. Institut, Preprint Series, no. 6, 1969. [p. 1163] MR 298541
  • A. J. Bernstein, 1967. Maximally connected arrays on the n-cube, SIAM J. Appl. Math. 15 (1967), 1485-1489. MR 36 #6308. [p. 1156] MR 223260
  • A. S. Besicovitch, 1959. Rational polygons, Mathematika 6 (1959), 98. MR 22 #1557. [p. 1180] MR 110682
  • W. Blaschke, 1915. Einige Bemerkungen über Kurven und Flächen konstanter Breite, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 67 (1915), 290-297. [p. 1165]
  • E. D. Bolker, 1969. A class of convex bodies, Trans. Amer. Math. Soc. 145 (1959), 323-345. [p. 1170] MR 256265
  • E. D. Bolker, 1970. Centrally symmetric polytopes, Proc. Twelfth Biennial Internat. Seminar of the Canadian Math. Congress (Vancouver, B.C., 1969) Canad. Math. Soc. Montreal 1970. (to appear), [p. 1170] MR 287432
  • B. Bollobas, 1967. Fixing systems for convex bodies, Studia Sci. Math. Hungar. 2 (1967), 351-354. MR 36 #3230. [p. 1173] MR 220164
  • W. E. Bonnice and L. M. Kelly, 1970. On the number of ordinary planes(to appear). [p. 1171]
  • W. Bonnice and V. Klee, 1963. The generation of convex hulls, Math. Ann. 152 (1963), 1-29. MR 27 #6108. [p. 1171] MR 156177
  • W. E. Bonnice and J. R. Reay, 1969. Relative interiors of convex hulls, Proc. Amer. Math. Soc. 20 (1969), 246-250. MR 38 #2669. [p. 1171] MR 234352
  • J. Bosák, 1967. Hamiltonian lines in cubic graphs, Proc. Internat. Sympos. Theory of Graphs (Rome, 1966) Gordon and Breach, New York; Dunod, Paris, 1967, pp. 35-46. MR 36 #5022. [p. 1144] MR 221970
  • R. Bott, 1952. Two new combinatorial invariants for polyhedra, Portugal. Math. 11 (1952), 35-40. MR 14, 74. [p. 1157] MR 48820
  • G. Böttger and H. Harders, 1964. Note on a problem by S. L. Hakimi concerning planar graphs without parallel elements, J. Soc. Indust. Appl. Math. 12 (1964), 838-839. MR 30 #2481. [p. 1142] MR 172261
  • H. Bowen and S. Fisk, 1967. Generation of triangulations of the sphere, Math. Comp. 21 (1967), 250-252. MR 36 #6325. [p. 1173, p. 1174] MR 223277
  • T. A. Brown, 1960. The representation of planar graphs by convex polyhedra, Note P-2085, The Rand Corp., Santa Monica, Calif., 1960. [p. 1138]
  • T. A. Brown, 1961. Simple paths on convex polyhedra, Pacific J. Math. 11 (1961), 1211-1214. MR 25 #3864. [p. 1147] MR 140444
  • William G. Brown, Historical Note on a Recurrent Combinatorial Problem, Amer. Math. Monthly 72 (1965), no. 9, 973–977. MR 1533479, https://doi.org/10.2307/2313332
  • M. Brückner, 1893. Die Elemente der vierdimensionalen Geometrie mit besonderer Berücksichtigung der Polytope, Jber. Ver. Naturkunde Zwickau 1893, 61 pp. [p. 1173]
  • M. Brückner, 1909. Über die Ableitung der allgemeinen Polytope und die nach Isomorphismus verschiedenen Typen der allgemeinen Achtzelle (Oktatope), Verh. Konink. Akad. Wetensch. 10 (1909), no. 1, 29 pp. [p. 1137, p. 1173]
  • H. Bruggesser and P. Mani, 1970. Shellable decompositions of cells and spheres, (to appear), [p. 1183] MR 328944
  • S. S. Cairns, 1940. Triangulated manifolds which are not Brouwer manifolds, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 359-361. MR 1, 317. [p. 1182] MR 1907
  • R. J. Canham, 1969. A theorem on arrangements of lines in the plane, Israel J. Math. 7 (1969), 393-397. [p. 1171] MR 254731
  • C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115 (German). MR 1511425, https://doi.org/10.1007/BF01449883
  • L. Carlitz, 1961. The sum of the angles in an n-dimensional simplex, Amer. Math. Monthly 68 (1961), 901-902. MR24 #A477. [p. 1157] MR 130617
  • A. Cayley, 1862. On the ∆-faced polyacrons in reference to the problem of the enumeration of polyhedra, Mem. Lit. Philos. Soc. Manchester 1 (1862), 248-256; Coll. Math. Papers 5 (1892), 38-43. [p. 1135]
  • J. L. Chrislock, Mathematical Notes: Imbedding a Skeleton of a Simplex in Euclidean Space, Amer. Math. Monthly 73 (1966), no. 4, 381–382. MR 1533736, https://doi.org/10.2307/2315406
  • J. Chuard, 1932. Les réseaux cubiques et le problème des quatres couleurs, Mém. Soc. Vaudoise Sci. Nat. 4 (1932), 41-101. [p. 1143]
  • J. Chuard, 1966. Graphes planaires homogènes de degré3, J. Combinatorial Theory l (1966), 411-436. MR 34 #4157. [p. 1147] MR 204313
  • V. Chvátal, 1969. Planarity of graphs with given degrees of vertices, Nieuw Arch. Wisk. 17 (1969), 47-60. [p. 1142, p. 1143] MR 265192
  • G. F. Clements, 1970. Sets of lattice points which contain a maximal number of edges(to appear), [p. 1156] MR 270923
  • G. F. Clements and B. Lindström, 1969. A generalization of a combinatorial theorem of Macauley, J. Combinatorial Theory 7 (1969), 230-238. MR 40 #50. [p. 1156] MR 246781
  • J. L. Coolidge, 1940. A history of geometrical methods, Oxford Univ. Press, New York, 1940. MR2, 113. [p. 1132] MR 2769
  • H. S. M. Coxeter, 1962. The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. (9) 41 (1962), 137-156; reprinted in Twelve geometric essays, Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 54-74. MR 25 #4417. [p. 1171] MR 141004
  • D. W. Crowe, 1969. Nearly regular polyhedra with two exceptional faces, Lecture Notes in Math. vol. 110, Springer-Verlag, Berlin, 1969, pp. 63-76. [p. 1143] MR 256928
  • D. W. Crowe and J. Molnár, 1969. On polyhedra with specified types of face, Math. Gaz. 53 (1969), 45-50. [p. 1143]
  • N. C. Dalkey, 1967. Parity patterns on even triangulated polygons, J. Combinatorial Theory 2 (1967), 100-102. MR 34 #4159. [p. 1142] MR 204315
  • L. Danzer, B. Grünbaum and V. Klee, 1963. Hetty's theorem and its relatives, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc. Providence, R. I., 1963, pp. 101-180. MR 28 #524. [p. 1171] MR 157289
  • C. Davis, 1954. Theory of positive linear dependence, Amer. J. Math. 76 (1954), 733-746. MR 16, 211. [p. 1171] MR 64011
  • D. E. Daykin, 1963. Rational polygons, Mathematika 10 (1963), 125-131. MR 30 #63. [p. 1180] MR 169820
  • H. Debrunner, 1955. Zu einem massgeometrischen Satz über Körper konstanter Breite, Math. Nachr. 13 (1955), 165-167. MR 17, 294. [p. 1165] MR 72498
  • D. Derry, 1968. Polygons of order n in L2 vertices, Math. Scand. 23 (1968), 73-95. [p. 1184] MR 259729
  • A. Dinghas, 1940. Verallgemeinerung eines Blaschkeschen Satzes über konvexe Körper konstanter Breite, Rev. Math. Union Interbalkan. 3 (1940), 17-20. MR 2, 261. [p. 1165] MR 3727
  • R. A. Duke, 1970. Geometric embedding of complexes, Amer. Math. Monthly 77 (1970), 597-603. [p. 1138] MR 264670
  • V. Eberhard, 1891. Zur Morphologie der Polyeder, Teubner, Leipzig, 1891. [p. 1138; p. 1140]
  • H. G. Eggleston, B. Grünbaum and V. Klee, 1964. Some semicontinuity theorems for convex polytopes and cell-complexes, Comment. Math. Helv. 39 (1964), 165-188. MR30 #5217. [p. 1152] MR 175031
  • G. Ewald, 1965. Von Klassen konvexer Körper erzeugte Hilberträume, Math. Ann. 162 (1965/66), 140-146. MR 32 #8255. [p. 1163] MR 190845
  • G. Ewald and G. C. Shephard, 1966. Normed vector spaces consisting of classes of convex sets, Math. Z. 91 (1966), 1-19. MR 32 #4597. [p. 1163] MR 187143
  • L. Euler, 1752a. Elementa doctrinae solidorum, Comment. Acad. Sci. Imp. Petrop. 4 (1752/ 53), 109-140. [p. 1173]
  • L. Euler, 1752b. Demonstratio nonullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita, Comment. Acad. Sci. Imp. Petrop. 4 (1752/53), 140-160. [p. 1173]
  • I. Fáry, 1948. On straight line representation of planar graphs, Acta Univ. Szeged. Sect. Sci. Math. 11 (1948), 229-233. MR 10, 136. [p. 1138] MR 26311
  • I. Fáry, 1949. Sur la courbure totale d'une courbe gauche faisant un noeud, Bull. Soc. Math. France 77 (1949), 128-138. MR 11, 393. [p. 1159] MR 33118
  • I. Fáry, 1960. Translation invariant, additive functionals related to mixed volumes, ONR Technical Report, Berkeley, 1960. [p. 1166]
  • I. Fáry, 1961. Functionals related to mixed volumes, Illinois J. Math. 5 (1961), 425-430. MR 24 #A811. [p. 1166] MR 130957
  • P. J. Federico, 1969. Enumeration of polyhedral The number of 9-hedra, J. Combinatorial Theory 7 (1969), 155-161. MR 39 #4746. [p. 1174, p. 1176] MR 243424
  • L. Fejes Tóth, 1962. On primitive polyhedra, Acta Math. Acad. Sci. Hungar. 13 (1962), 379-382. MR 26 #2942. [p. 1171] MR 145411
  • W. J. Firey and B. Grünbaum, 1964. Addition and decomposition of convex polytopes, Israel J. Math. 2 (1964), 91-100. MR 30 #5218. [p. 1163, p. 1171] MR 175032
  • H. Flanders, 1966. The Steiner point of a closed hypersurface, Mathematika 13 (1966), 181-188. MR 34 #6695. [pp. 1162, 1163] MR 206879
  • A. Flores, 1932. Über die Existenz n-dimensionaler Komplexe, die nicht in den R, Ergebnisse Math. Kolloq. 5 (1932), 17-24. [p. 1135]
  • A. Flores, 1933. Über n-dimensionale Komplexe, die im R, Ergebnisse Math. Kolloq. 6 (1933), 4-6. [p. 1135]
  • D. Gale, 1963. Neighborly and cyclic polytopes, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc. Providence, R. I., 1963, pp. 225-232. MR 27 #2915. [p. 1150] MR 152944
  • T. Gallai, 1970. Signierte Zellenzerlegungen, Acta Math. Acad. Sci. Hungar. (to appear), [p. 1142]
  • D. W. Grace, 1965. Computer search for non-isomorphic convex polyhedra, Report CS 15, Computer Science Dept., Stanford University, Stanford, Calif., 1965. [p. 1173]
  • E. Ja. Grinberg, 1968. Plane homogeneous graphs of degree three without Hamiltonian circuits, Latvian Math. Yearbook, 4 Izdat. "Zinatne", Riga, 1968, pp. 51-58. (Russian) MR 39 #96. [p. 1144] MR 238732
  • H. Grötzsch, 1956. Zur Theorie der Dreikantnetze auf der Kugel und der einfach Diskreten Gebilde. I. Elementare kombinatorische Eigenschaften gewisser punktierten Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 5 (1956), 839-844. MR22 #2987a. [p. 1143] MR 112129
  • H. Grötzsch, 1962. Zur Theorie der diskreten Gebilde. 15. Mitteilung: Zusatzbemerkungen, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 11 (1962), 733-736. MR 29 #1637. [p. 1143] MR 164340
  • B. Grünbaum, 1963a. Unambiguous polyhedral graphs, Israel J. Math. 1 (1963), 235-238. MR 32 #2972. [p. 1136] MR 185506
  • B. Grünbaum, 1963b. Measures of symmetry for convex sets, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc. Providence, R. I., 1963, pp. 233-270. MR 27 #6187. [p. 1163] MR 156259
  • B. Grünbaum, 1964. Fixing systems and inner illumination, Acta Math. Acad. Sci. Hungar. 15 (1964), 161-163. MR 28 #3367. [p. 1173] MR 160153
  • B. Grünbaum, 1965. On the facial structure of convex polytopes, Bull. Amer. Math. Soc. 71 (1965), 559-560. MR 32 #448. [p. 1135] MR 182966
  • B. Grünbaum, 1967a. Convex polytopes, Interscience, New York, 1967. MR 37 #2085. MR 226496
  • B. Grünbaum, 1967b. The number of faces of convex polytopes, Proc. Colloq. Convexity (Copenhagen, 1965) Københavns Univ. Mat. Inst., Copenhagen, 1967. [p. 1131p. 1149]
  • B. Grünbaum, 1968a. Some analogues of Eberhard's theorem on convex polytopes, Israel J. Math. 6 (1968), 398-411. MR 39 #6168. [p. 1140, p. 1141] MR 244854
  • B. Grünbaum, 1968b. Grassmann angles of convex polytopes, Acta Math. 121 (1968), 293-302. MR 38 #6455. [p. 1159, p. 1160, p. 1161] MR 238179
  • B. Grünbaum, 1969a. Planar maps with prescribed types of vertices and faces, Mathematika 16 (1969), 28-36. MR 39 #6768. [p. 1141] MR 245460
  • B. Grünbaum, 1969b. Graphs, complexes, and polytopes, Recent Progress in Combinatorics, Academic Press, New York, 1969, pp. 85-90. [p. 1138] MR 252259
  • B. Grünbaum, 1969c. Some results on the upper-bound conjecture for convex polytopes, SIAM J. Appl. Math. 17 (1969), 1142-1149. [p. 1151, p. 1152] MR 259745
  • B. Grünbaum, 1969d. Imbeddings of simplicial complexes, Comment. Math. Helv. 44 (1969), 502-513. [p. 1135, p. 1138] MR 254851
  • B. Grünbaum, 1969e. Nerves of simplicial complexes, Aequationes Math, (to appear), [p. 1157] MR 264648
  • B. Grünbaum, 1970a. Some combinatorial problems, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 500-501. [p. 1135, 1139]
  • B. Grünbaum, 1970b. On the enumeration of convex polytopes and combinatorial spheres(to appear), [p. 1137, p. 1156, p. 1182]
  • B. Grünbaum, 1970c. On combinatorial spheres, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 119-122. [p. 1137, p. 1152, p.1156, p. 1182] MR 271834
  • B. Grünbaum, 1970d. The importance of being straight, Proc. Twelfth Biennial Internat. Seminar of the Canadian Math. Congress (Vancouver B. C, 1969) Canad. Math. Soc. Montreal, 1970. [p. 1137, p. 1156, p. 1171, p. 1182] MR 279671
  • B. Grünbaum, 1970e. Arrangements, spreads, and topological planes. (to appear). [p. 1171, p. 1182] MR 307027
  • B. Grünbaum, 1970f. Valence sequence and related topics. [p. 1142]
  • B. Grünbaum, 1970g. Higher-dimensional analogues of the four-color problem and some inequalities for simplicial complexes, J. Combinatorial Theory 8 (1970), 147-153. [p. 1143, p. 1155] MR 252274
  • B. Grünbaum and T. S. Motzkin, 1962. Longest simple paths in polyhedral graphs, J. London Math. Soc. 37 (1962), 152-160. MR 25 #2598. [p. 1146] MR 139161
  • B. Grünbaum and T. S. Motzkin, 1963a. On polyhedral graphs, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc. Providence, R. I., 1963, pp. 285-290. MR 27 #2976. [p. 1135, p. 11361 MR 153005
  • B. Grünbaum and T. S. Motzkin, 1963b. The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad, J. Math. 15 (1963), 744-751. MR 27 #4133. [p. 1141] MR 154182
  • B. Grünbaum and G. C. Shephard, 1969. Convex polytopes, Bull. London Math. Soc. 1 (1969), 257-300. [p. 1131, p. 1139, p. 1149, p. 1168] MR 250188
  • B. Grünbaum and V. P. Sreedharan, 1967. An enumeration of simplicial 4-polytopes with 8 vertices, J. Combinatorial Theory 2 (1967), 437-465. MR 35 #6025; MR 35 #6025. [p. 1135, p. 1137, p. 1156, p. 1173, p. 1174, p. 1182] MR 215182
  • R. K. Guy, 1967. Dissecting a polygon into triangles, Research Paper, no. 9, Dept. of Mathematics, University of Calgary, Calgary, Alberta, 1967. [p. 1173]
  • H, Hadwiger, 1957. Vorlesungen über Inhalt. Oberfläche und Isoperimetrie, Springer-Verlag, Berlin, 1957. MR 21 #1561. [p. 1166] MR 102775
  • H, Hadwiger, 1958. Ungelöste Probleme, No. 24, Elem. Math. 13 (1958), 85. [p. 1181]
  • H. Hadwiger, 1968. Eine Schnittrekursion für die Eulersche Charakteristik euklidischer Polyeder mit Anwendungen innerhalb der kombinatorischen Geometrie, Elem. Math. 23 (1968), 121-132. MR 38 #5112. [p. 1149] MR 236818
  • H. Hadwiger, 1969a. Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper, Israel J. Math. 7 (1969), 168-176. [p. 1166] MR 251636
  • H. Hadwiger, 1969b. Eckenkrümmung beliebiger kompakter euklidischer Polyeder und Charakteristik von Euler-Poincaré, Enseignment Math. 15 (1969), 147-151.MR40#834. [p.1162] MR 247569
  • H. Hadwiger, 1970. Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper, Israel J. Math, (to appear), [p. 1166] MR 251636
  • H. Hadwiger and H. Debrunner, 1960. Kombinatorische Geometrie in der Ebene, Monographies de L'Enseignement Mathématiques, no. 2, Inst. Math. Univ. Genève, 1960. MR 22 #11310.[p. 1181] MR 120559
  • H. Hadwiger, H. Debrunner and V. Klee, 1964. Combinatorial geometry in the plane, Holt, Rinehart and Winston, New York, 1964. MR 29 #1577. [p. 1181] MR 164279
  • S. L. Hakimi, 1962. On the realizability of a set of integers as degrees of the vertices of a linear graph. I, II, J. Soc. Indust. Appl. Math. 10 (1962), 496-506; ibid. 11 (1963), 135-147. MR 26 #5558; MR 27 #2972. [p. 1142] MR 148049
  • R. Halin, 1966. Zu einem Problem von B. Grünbaum, Arch. Math. (Basel) 17 (1966), 566-568. MR 35 #5355. [p. 1135] MR 214505
  • G. Hansel, 1967. Problemes de denombrement et d'evaluation de bornes concernant les elements du treillis distributif libre, Publ. Inst. Stat. Univ. Paris 16 (1967), 159-300.[p. 1152] MR 241333
  • W. Hansen and V. Klee, 1969. Intersection theorems for positive sets, Proc. Amer. Math. Soc. 22. (1969), 450-457. [p. 1171] MR 254563
  • L. H. Harper, 1964. Optimal assignments of numbers to vertices, J. Soc. Indust. Appl. Math. 12 (1964), 131-135. MR 29 #41. [p. 1156] MR 162737
  • K. Hauschild, 1967. Über Färbungen von 4-regulären Landkarten, Wiss. Z. Techn. Hochsch. Ilmenau 13 (1967), 399-402. MR 39 #4048. [p. 1143] MR 242719
  • K. Hauschild, 1968. Über ein Farbungsproblem auf der Kugel, Beitrage zur Graphen theorie Internat. Kolloq. Manebach, 1967. Teubner, Leipzig, 1968, pp. 61-70. MR 40 #1302. [p. 1143] MR 248047
  • A. F. Hawkins, A. C. Hill, J. E. Reeve and J. A. Tyrrell, 1966. On certain polyhedra, Math. Gaz. 50 (1966), 140-144. [p. 1143]
  • P. J. Heawood, 1936. Failures in congruences connected with the four-colour map theorem, Proc. London Math. Soc. (2) 40 (1936), 189-202. [p. 1142]
  • F. Hering, 1969. Untersuchungen über die kombinatorische Struktur von Polyedern, Ph.D. Thesis, Bonn, 1969. [p. 1134]
  • O. Hermes, 1899. Die Formen der Vielfläche, J. Reine Angew. Math. 120 (1899), 27-59, 305- 353; ibid. 122 (1900), 124-154; 123 (1901), 312-342. [p. 1174]
  • W. Höhn, 1953. Winkel und Winkelsumme im n-dimensionalen euklidischen Simplex, Ph.D. Thesis, Eidgenössische Technische Hochschule, Zürich, 1953. MR 15, 55. [p. 1158] MR 56299
  • H. F. Hunter, 1962a. On non-Hamiltonian maps and their duals, Ph.D. Thesis, Rensselaer Polytech. Inst., 1962. [p. 1143]
  • E. Jucovič, 1962. Self-conjugate K-polyhedra, Mat.-Fys. Časopis. Sloven. Akad. Vied. 12 (1962), 1-22. (Russian) MR 28 #2478. [p. 1173] MR 159261
  • E. Jucovič, 1968. A note on paths in quadrangular polyhedral graphs, Časopis Pĕst. Mat. 93 (1968), 69-72. (Slovak) MR 39 #2658. [p. 1147] MR 241318
  • E. Jucovič, 1969. On polyhedral realizability of certain sequences, Canad. Math. Bull. 12 (1969), 31-39. MR 39 #5390. [p. 1141] MR 244073
  • E. Jucovič, 1970a. On the number of hexagons in a map, J. Combinatorial Theory (to appear). [p. 1141] MR 278179
  • E. Jucovič, 1970b. Characterization of the p-vector of a self-dual 3-polytope, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 185-187. [p. 1142] MR 266794
  • E. Jucovič, 1970c. On the p-vector of a 4-valent convex and toroidal 3-polytope, (to appear), [p.1150]
  • H. A. Jung, 1967. Zusammenzüge und Unterteilungen von Graphen, Math. Nachr. 35 (1967), 241-267. MR 37 #3947. [p. 1135] MR 228366
  • H. A. Jung, 1970a. A variation of n-connectedness, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 189-191. [p. 1135]
  • H. A. Jung, 1970b. Eine Verallgemeinerung des n-fachen Zusammenhangs fur Graphen, Math. Ann. (to appear), [p. 1135] MR 268067
  • E. R. van Kampen, 1932. Komplexe in Euklidischen Räumen, Abh. Math. Sem. Univ. Hamburg 9 (1932), 72-78. [p. 1135]
  • E. R. van Kampen, 1941. Remark on the address of S. S. Cairns, Lectures in Topology, Univ. of Michigan Press, Ann Arbor, Mich., 1941, pp. 311-313. MR 3, 135. [p. 1182] MR 5314
  • G. Katona, 1968. A theorem on finite sets, Proc. Colloq. Theory of Graphs (Tihany, 1966) Academic Press, New York; Akad. Kiadó, Budapest, 1968, pp. 187-207. [p. 1152] MR 290982
  • L. M. Kelly and R. R. Rottenberg, 1970. Simple points in pseudoline arrangements(to appear), [p. 1183] MR 307029
  • T. P. Kirkman, 1854. On the representation and enumeration of polyedra, Mem. Lit. Philos. Soc. Manchester (2) 12 (1854), 47-70 [p. 1173]
  • T. P. Kirkman, 1857. On autopolar polyedra, Philos. Trans. Roy. Soc. London 147 (1857), 183-215. [p. 1137, p. 1138]
  • V. Klee, 1964a. A property of d-polyhedral graphs, J. Math. Mech. 13 (1964), 1039-1042. MR 29 #6487. [p. 1134, p. 1136] MR 169234
  • V. Klee, 1964b. A combinatorial analogue of Poincaré's duality theorem, Canad. J. Math. 16 (1964), 517-531. MR 32 #6466. [p. 1151] MR 189039
  • V. Klee, 1964c. On the number of vertices of a convex polytope, Canad. J. Math. 16 (1964), 701-720. MR 29 #3955. [p. 1151] MR 166682
  • V. Klee, 1966. Convex polytopes and linear programming, Proc. IBM Sci. Comput. Sympos. Combinatorial Problems (Yorktown Heights, N. Y., 1964) IBM Data Process. Division, White Plains, New York, 1966, pp. 123-158. MR 36 #786. [p. 1131, p. 1149] MR 217697
  • V. Klee and D. Walkup, 1967. The d-step conjecture for polyhedra of dimension d<6, Acta Math. 117 (1967), 53-78. MR 34 #6639. [p. 1147] MR 206823
  • A. Kotzig, 1965. Coloring of trivalent polyhedra, Canad. J. Math. 17 (1965), 659-664. MR 33 #712. [p. 1142] MR 192487
  • A. Kotzig, 1970. Regularly connected 3-valent graphs without non-trivial cuts of cardinality3 (to appear), [p. 1138]
  • J. B. Kruskal, 1963. The number of simplices in a complex, Mathematical Optimization Techniques, Univ. of California Press, Berkeley, Calif., 1960, pp. 251-278. MR 27 #4771. [p. 1152] MR 154827
  • J. B. Kruskal, 1969. The number of s-dimensional faces in a complex: An analogy between the simplex and the cube, J. Combinatorial Theory 6 (1969), 86-89. MR 38 #4328. [p. 1156] MR 236030
  • D. G. Larman, 1970. Paths on polytopes, Proc. London Math. Soc. (3) 20 (1970), 161-178. [p. 1147] MR 254735
  • D. G. Larman and P. Mani, 1970a. On the existence of certain configurations within graphs and the 1-skeletons of polytopes, Proc. London Math. Soc. (3) 20 (1970), 144-160. [p. 1134, p. 1135] MR 263687
  • D. G. Larman and P. Mani, 1970b. Gleichungen und Ungleichungen für Geruste die von konvexen Polytopen und Zellenkomplexen, Comment. Math. Helv. 45 (1970), 199-218. [p. 1162] MR 284914
  • J. Lederberg, 1966. Systematics of organic molecules, graph theory and Hamiltonian circuits, Instrumentation Research Laboratory Report, no. 1040, Stanford University, Stanford, Calif., 1966. [p. 1144]
  • J. Lederberg, 1967. Hamilton circuits of convex trivalent polyhedra (up to 18 vertices), Amer. Math. Monthly 74 (1967), 522-527. MR 35 #2770. [p. 1145] MR 211895
  • K.-C. Lee, 1959. Kombinatorische Invarianten von endlichem Komplex, Acta Math. Sinica 8 (1958), 473-482; Sci. Sinica 8 (1959), 449-460=Chinese Math. Acta 9 (1967), 199-208. MR 21 #3834; 3835. [p. 1157] MR 105089
  • F. Levi, 1926. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade, Ber. Verh. Sachs. Akad. Wiss. Leipzig. Math.-Nat. Kl 78 (1926), 256-267. [p. 1182, p. 1183]
  • N. F. Lindquist, 1968. Approximation of convex bodies by finite sums of line segments, Notices Amer. Math. Soc. 15 (1968), 138. Abstract #653-207. [p. 1170]
  • J.H.Lindsey, II, 1964. Assignment of numbers to vertices, Amer. Math. Monthly 71 (1964), 508-516. MR 29 #5751. [p. 1156] MR 168489
  • B. Lindstrom, 1970a. On the realization of convex polytopes. Euler's formula and Mobius functions, Aequationes Math, (to appear), [p. 1185] MR 295208
  • B. Lindstrom, 1970b. The optimal number of faces in cubical complexes(to appear), [p. 1184] MR 313066
  • E. K. Lloyd, 1970. The number of d-polytopes with d+3 vertices, Mathematika (to appear), [p. 1173, p. 1174, p. 1175] MR 275279
  • L. A. Lyusternik, 1956. Convex figures and polyhedra, GITTL, Moscow, 1956; English transl., Dover, New York, 1963; Heath, Boston, Mass., 1966. MR 19, 57; MR 28 #4427; MR 36 #4435. [p. 1137] MR 161219
  • I. G. Macdonald, 1970. Polynomials associated with finite cell complexes(to appear), [p. 1149] MR 298542
  • W. Mader, 1967. Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967), 265-268. MR 36 #3668. [p. 1135] MR 220616
  • W. Mader, 1968. Homomorphiesätze für Graphen, Math. Ann. 178 (1968), 154-168. MR 37 #5124. [p. 1135] MR 229550
  • J. Malkevitch, 1969. Properties of planar graphs with uniform vertex and face structure, Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1969. [p. 1141, p. 1142] MR 260616
  • J. Malkevitch, 1970a. Properties of planar graphs with uniform vertex and face structure, Mem. Amer. Math. Soc. No. 99 (1970). [p. 1141, p. 1142] MR 260616
  • J. Malkevitch, 1970b. A survey of 3-valent 3-polytopes with two types of faces, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 255-256. [p. 1141]
  • P. Mani, 1970a. Bridges in 6-connected graphs(to appear), [p. 1135]
  • P. Mani, 1970b. Spheres with few vertices, J. Combinatorial Theory (to appear), [p. 1156] MR 317175
  • P. Mani, 1970c. On angle sums and Steiner points of polyhedra, Israel J. Math, (to appear). [p. 1162, p. 1166] MR 278182
  • P. Mani, 1970d. On polytopes fixed by their vertices, Acta Math. Acad. Sci. Hungar. (to appear). [p 1173] MR 298543
  • P. Mani, 1970e. Automorphismen von polyedrischen Graphen(to appear), [p. 1183] MR 296808
  • R. L. McKinney, 1962. Positive basis for linear spaces. Trans. Amer. Math. Soc. 103 (1962), 131-148. MR 26 #5392. [p. 1171] MR 147879
  • P. McMullen, 1968a. On the combinatorial structure of convex polytopes, Ph.D. Thesis, University of Birmingham, 1968. [p. 1168, p. 1169, p. 1177, p. 1178]
  • P. McMullen, 1968b. Seminar on convex polytopes, Lecture Notes, Western Washington State College, Bellingham, 1968. [p. 1149, p. 1168, p. 1170, p. 1175, p. 1176, p. 1177]
  • P. McMullen, 1969. Linearly stable polytopes, Canad. J. Math. 21 (1969), 1427-1431. [p. 1179] MR 253149
  • P. McMullen, 1970a. On the upper bound conjecture for convex polytopes, J. Combinatorial Theory (to appear), [p. 1150, p. 1151] MR 275290
  • P. McMullen, 1970b. Further results on the upper-bound conjecture for convex polytopes(to appear). [p. 1152] MR 275290
  • P. McMullen, 1970c. A lower-bound conjecture for convex polytopes(to appear), [p. 1153]
  • P. McMullen, 1970d. On a problem of Klee concerning convex polytopes, Israel J. Math. 8 (1970), 1-4. [p. 1153] MR 259747
  • P. McMullen, 1970e. On zonotopes(to appear), [p. 1170, p. 1171, p. 1176] MR 279689
  • P. McMullen, 1970f. Polytopes with centrally symmetric faces(to appear), [p. 1170] MR 262924
  • P. McMullen, 1970g. The maximum numbers of faces of a convex polytope, Mathematika (to appear), [p. 1183, p. 1184] MR 283691
  • P. McMullen and G. C. Shephard, 1968a. Diagrams for centrally symmetric polytopes, Mathematika 15 (1968), 123-138. MR 38 #6456. [p. 1156, p. 1168, p. 1169, p. 1176, p. 1182] MR 238180
  • P. McMullen and G. C. Shephard, 1968b. The upper bound conjecture, Lecture Notes, University of East Anglia, Norwich, 1968. [p. 1150, p. 1151, p. 1161, p. 1168]
  • P. McMullen and G. C. Shephard, 1970a. Polytopes with an axis of symmetry, Canad, J. Math. 22 (1970), 265-287. [p. 1150, p. 1151] MR 259746
  • P. McMullen and G. C. Shephard, 1970b. The upper bound conjecture for convex polytopes, London Math. Soc. Lecture Note Series, [p. 1168, p. 1175]
  • P. McMullen and G. C. Shephard, 1970c. Representations and diagrams(to appear), [p. 1166]
  • P. McMullen and D. W. Walkup, 1970. A generalized lower-bound conjecture for simplicial polytopes(to appear). [p. 1154] MR 298557
  • B. L. Meek, 1968. Some results on k-maps, Math. Gaz. 52 (1968), 33-42. [p. 1143]
  • D. M. Mesner and M. E. Watkins, 1966. Some theorems about n-vertex connected graphs, J. Math. Mech. 16 (1966), 321-326. MR 34 #94. [p. 1134] MR 200195
  • W. Meyer, 1969. Minkowski addition of convex sets, Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1969. [p. 1163]
  • H. Minkowski, 1897. Allgemeine Lehrsätze über konvexe Polyeder, Nachr. Ges. Wiss. Göttingen 1897, 198-219; Cf: Ges. Abh. Vol. 2, Leipzig and Berlin, pp. 103-121, 1911; reprint, Chelsea, New York, 1967. [p. 1171]
  • Hermann Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), no. 4, 447–495 (German). MR 1511220, https://doi.org/10.1007/BF01445180
  • J. W. Moon and L. Moser, 1963. Simple paths on polyhedra, Pacific J. Math. 13 (1963), 629-631. MR 27 #4225. [p. 1146, p. 1147] MR 154276
  • L. J. Mordell, 1960. Rational quadrilaterals, J. London Math. Soc. 35 (1960), 277-282. MR 23 #A1593. [p. 1180] MR 124279
  • T. S. Motzkin, 1964. The evenness of the number of edges of a convex polyhedron, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 44-45. MR 30 #3411. [p. 1142] MR 173198
  • T. S. Motzkin, 1967a. The edge number of regular-homomorphic 3-polyhedra, Proc. Colloq. Convexity (Copenhagen, 1965) Københavns Univ. Mat. Inst., Copenhagen, 1967, pp. 212-213. [p. 1142]
  • T. S. Motzkin, 1967b. The frequencies of vertex and face valences of convex and of more general 2-tesselations, Proc. Colloq. Convexity (Copenhagen, 1965) Københavns Univ. Mat. Inst., Copenhagen, 1967, pp. 214-218. [p. 1142]
  • T. S. Motzkin, 1967c. Combinatorial realization of centrally symmetric convex polyhedra, J. Combinatorial Theory 3 (1967), 441. [p. 1183] MR 214478
  • A. Müller, 1953. Auf einem Kreis liegende Punktmengen ganzzahliger Entfernungen, Elem. Math. 8 (1953), 37-38. [p. 1181]
  • H. R. Müller, 1967. Zur axiomatischen Bergündung der Eikörperfunktionale, Monatsh. Math. 71 (1967), 338-343. MR 36 #5818. [p. 1166] MR 222768
  • O. Ore, 1967. The four-color problem, Pure and Appl. Math., vol. 27, Academic Press, New York, 1967. MR 36 #74. [p. 1146] MR 216979
  • M. A. Perles and G. T. Sallee, 1970. Cell complexes, valuations and the Euler relation, Canad. J. Math. 22 (1970), 235-241. [p. 1166] MR 262925
  • M. A. Perles and G. C. Shephard, 1967a. Facets and nonfacets of convex polytopes, Acta Math. 119 (1967), 113-145. MR 36 #7022. [p. 1160, p. 1161] MR 223975
  • M. A. Perles and G. C. Shephard, 1967b. Angle sums of convex polytopes, Math. Scand. 21 (1967), 199-218. MR 39 #4747. [p. 1158, p. 1159, p. 1160] MR 243425
  • G. Pólya, 1937. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937), 145-254. [p. 1175]
  • H. Rademacher, 1965. On the number of certain types of polyhedra, Illinois J. Math. 9 (1965), 361-380. MR 31 #3927. [p. 1173] MR 179682
  • J. R. Reay, 1965a. A new proof of the Bonnice-Klee theorem, Proc. Amer. Math. Soc. 16 (1965), 585-587. MR 31 #5145. [p. 1171] MR 180915
  • J. R. Reay, 1965b. Generalizations of a theorem of Carathéodory, Mem. Amer. Math. Soc. No. 54 (1965). MR 32 #6319. [p. 1171] MR 188891
  • J. R. Reay, 1966. Unique minimal representations with positive bases, Amer. Math. Monthly 73 (1966), 253-261. MR 33 #7827. [p. 1171] MR 199684
  • J. R. Reay, 1967. Positive bases as a tool in convexity, Proc. Colloq. Convexity (Copenhagen, 1965) Køfoenhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 255-260. MR 36 #5819. [p. 1171] MR 222769
  • J. R. Reay, 1968a. Projections of f-vectors of 4-polytopes, Notices Amer. Math. Soc. 15 (1968), 620. Abstract #657-24. [p. 1154]
  • J. R. Reay, 1968b. An extension of Radon's theorem, Illinois J. Math. 12 (1968), 184r-189. MR 37 #824 [p. 1168] MR 225230
  • E. Ja. Remez and A. S. Šteĭnberg, 1967. On a theorem on convex polyhedra in connection with the question of finding the totality of solutions of systems of linear inequalities, Ukrain. Mat. Ž. 19 (1967), no. 2, 74-89. (Russian) MR 35 #3543. [p. 1134] MR 212676
  • K. Reidemeister and K. Horneffer, 1968. Zur Farbung von Simplizialkomplexen der Sphare, Nachr. Akad. Wiss. Gottingen. Math.-Phys. Kl. II, 1968, 171-182. MR 38 #5204. [p. 1183] MR 236911
  • G. Ringel, 1956. Teilungen der Ebene durch Geraden oder topologische Geraden, Math, Z. 64 (1956), 79-102. MR 17, 651. lp. 1183] MR 74817
  • G. Ringel, 1957. Über Geraden in allgemeiner Lage, Elem. Math. 12 (1957), 75-82. MR 19, 673. [p. 1183] MR 89430
  • J. Riordan, 1966. The number of faces of simplicial polytopes, J. Combinatorial Theory 1 (1966), 82-95. MR 33 #6501. [p. 1149] MR 198343
  • R. R. Rottenberg, 1969. On finite sets of points in P, Technion Preprint Series, no. MT-31, Technion, Haifa, 1969. [p. 1171]
  • D. A. Rowland, 1968. An extension of Eberhard's theorem, M.Sci. Thesis, University of Washington, Seattle, Wash., 1968. [p. 1142]
  • H. Sachs, 1968. Ein von Kozyrev und Grinberg angegebener nicht-Hamiltonischer kubischer polanarer Graph, Beitrage zur Graphentheorie Internat. Kolloq. Manebach, 1967. Teubner, Leipzig, 1968, pp. 127-130. MR 39 #5403. [p. 1144] MR 244086
  • G. T. Sallee, 1966. A valuation property of Steiner points, Mathematika 13 (1966), 76-82. MR 33 #7937. [p. 1166] MR 199794
  • G. T. Sallee, 1967. Incidence graphs of convex polytopes, J. Combinatorial Theory 2 (1967), 466-506. MR 35 #7198. [p. 1134] MR 216364
  • G. T. Sallee, 1968. Polytopes, valuations, and the Euler relation, Canad. J. Math. 20 (1968), 1412-1424. MR 38 #605. [p. 1166] MR 232279
  • G. T. Sallee, 1970. A non-continuous "Steiner point"(to appear), [p. 1163] MR 296814
  • G. Sansone, 1928. Sui prismi e le piramidi regolari razionali, Period. Mat. (4) 8 (1928), 106-116. [p. 1181]
  • L. A. Santaló, 1946. On the convex bodies of constant width in E, Portugal. Math. 5 (1946), 195-201. MR 9, 526. [p. 1165] MR 24644
  • P. Scherk, 1969. Über eine Klasse von Polyederfunktionalen, Comment. Math. Helv. 44 (1969), 191-201. [p. 1166] MR 244855
  • V. Schlegel, 1891. Ueber die verschiedenen Formen von Gruppen, welche r beliebige Punkte im n-dimensionalen Raum bilden konnentArch. Math. Phys. (2) 10 (1891), 283-299. [p. 1173]
  • V. Schlegel, 1893. Ueber Projectionen der mehrdimensionalen regelmässigen Körpert Jber. Deutsch. Math. Verein. 2 (1893), 66-69. [p. 1137]
  • K.-A. Schmitt, 1967. Hilbert spaces containing sub spaces consisting of symmetry classes of convex bodies, Proc. Colloq. Convexity (Copenhagen, 1965) Københavns Univ. Mat. Inst., Copenhagen, 1967, pp. 278-280. [p. 1163]
  • K.-A. Schmitt, 1968. Kennzeichnung des Steinerpunktes konvexer Körper, Math. Z. 105 (1968), 387-392. MR 37 #6834. [p. 1163] MR 231279
  • R. Schneider, 1967a. Zu einem Problem von Shephard über die Projektionen konvexer Körper, Math. Z. 101 (1967), 71-82. MR 36 #2059. [p. 1170] MR 218976
  • R. Schneider, 1967b. Über die Durchschnitte translationsgleicher konvexer Körper und eine Klasse konvexer Polyeder, Abh. Math. Sem. Univ. Hamburg. 30 (1967), 118-128. MR 35 #6029. [p. 1173] MR 215186
  • R. Schneider, 1970. On Steiner points of convex bodies, Israel J. Math. (to appear). [p. 1163] MR 278187
  • F. Schoblik, 1930. Zum Problem des Kartenfärbens, Jber. Deutsch. Math. Verein. 39 (1930), 51-52. [p. 1143]
  • P. H. Schoute, 1905. Mehrdimensionale Geometrie. Zweiter Teil: Die Polytope, Teubner, Leipzig, 1905. [p. 1137, p. 1173]
  • T. K. Sheng, 1966. Rational polygons, J. Austral. Math. Soc. 6 (1966), 452-459. MR 35 #137. [p. 1181] MR 209235
  • G. C. Shephard, 1964a. Approximation problems for convex polyhedra, Mathematika 11 (1964), 9-18. MR 30 #2399. [p. 1163] MR 172177
  • G. C. Shephard, 1966a. The Steiner point of a convex polytope, Canad. J. Math. 18 (1966), 1294-1300. MR 35 #4814. [p. 1162, p. 1163] MR 213962
  • G. C. Shephard, 1966b. A pre-Hilbert space consisting of classes of convex sets, Israel J. Math. 4 (1966), 1-10. MR 34 #3435. [p. 1163] MR 203585
  • G. C. Shephard, 1967a. An elementary proof of Gram's theorem for convex polytopes, Canad. J. Math. 19 (1967), 1214-1217. MR 37 #822. [p. 1158] MR 225228
  • G. C. Shephard, 1967b. Polytopes with centrally symmetric faces, Canad. J. Math. 19 (1967), 1206-1213. MR 36 #4433. [p. 1170] MR 221381
  • G. C. Shephard, 1968a. Angle deficiencies of convex polytopes, J. London Math. Soc. 43 (1968), 325-336. MR 37 #5784. [p. 1158, p. 1159, p. 1160, p. 1161] MR 230221
  • G. C. Shephard, 1968b. A uniqueness theorem for the Steiner point of a convex region, J. London Math. Soc. 43 (1968), 439-444. MR 37 #3447. [p. 1163] MR 227863
  • G. C. Shephard, 1968c. Euler-type relations for convex polytopes, Proc. London Math. Soc. (3) 18 (1968), 597-606. MR 38 #606. [p. 1164] MR 232280
  • G. C. Shephard, 1968d. A theorem on cyclic polytopes, Israel J. Math. 6 (1968), 368-372. MR 39 #6170. [p. 1150] MR 244856
  • G. C. Shephard, 1968e. The mean width of a convex polytope, J. London Math. Soc. 43 (1968), 207-209. MR 37 #2087. [p. 1165] MR 226498
  • G. C. Shephard, 1970a. Diagrams for positive bases(to appear), [p. 1171, p. 1176] MR 295209
  • G. C. Shephard, 1970b. Spherical complexes and radial projections of polytopes, Israel J. Math, (to appear), [p. 1184] MR 282291
  • G. C. Shephard and R. J. Webster, 1965. Metrics for sets of convex bodies, Mathematika 12 (1965), 73-88. MR 32 #2975. [p. 1163] MR 185509
  • D. M. Y. Sommerville, 1927. The relations connecting the angle-sums and volume of a polytope in space of n dimensions, Proc. Roy. Soc. London Ser. A115 (1927), 103-119. [p. 1158]
  • S. K. Stein, 1951. Convexmaps, Proc. Amer.Math. Soc.2 (1951), 464-466.MR 12, 845. [p. 1138] MR 41425
  • J. Steiner, 1830. Problème de situation, Ann. Math. Gergonne 19 (1830), 36; Cf : Ges. Werke. Vol. 1, 1881, p. 227. [p. 1173]
  • J. Steiner, 1840. Von dem Krümmungsschwerpunkte ebener Curven, J. Reine Angew. Math. 21 (1840), 33-63, 101-122; Cf: Ges. Werke. Vol. 2, Reiner, Berlin, 1882, pp. 99-159. [p. 1162]
  • E. Steinitz, 1906. Über die Eulersche Polyederrelationen, Arch. Math. Phys. (3) 11 (1906), 86-88. [p. 1148]
  • E. Steinitz, 1909. Über diejenigen konvexen Polyder mit n Grenzflächen, welche nicht durch n-4 ebene Schnitte aus einen Tetraeder abgeleitet werden können, Arch. Math. Phys. (3) 14 (1909), 1-48. [p. 1171]
  • E. Steinitz, 1913. Bedingt konvergente Reihen und konvexe Systeme, J. Reine Angew. Math. 143 (1913), 128-175; 144 (1914), 1-40; 146 (1916), 1-52. [p. 1171]
  • E. Steinitz, 1922. Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. 3 (1922), Geometrie part 3AB12, 1-139. [p. 1136, p. 1137]
  • E. Steinitz and H. Rademacher, 1934. Vorlesungen über die Theorie der Polyeder, Springer, Berlin, 1934. [p. 1137]
  • J. Stoer and C. Witzgall, 1970. Convexity and optimization in finite dimensions. I, Springer, New York and Berlin, 1970. [p. 1166] MR 286498
  • M. Stojaković, 1959. Über die Konstruktion der ebenen Graphen, Univ. Beograd. Godišnjak Filozof. Fak. Novom Sadu 4 (1959), 375-378. MR 25 #4518. [p. 1138] MR 141105
  • F. Supnick, 1951. On the perspective deformation of polyhedra, Ann. of Math. (2) 53 (1951), 551-555. MR 12, 846. [p. 1184] MR 41432
  • P. G. Tait, 1880. Remarks on the colouring of maps, Proc. Roy. Soc. Edinburgh 10 (1880), 501-503. [p. 1143]
  • W. T. Tutte, 1946. On Hamiltonian circuits, J. London Math. Soc. 21 (1946), 98-101. MR 8, 397. [p. 1143] MR 19300
  • W. T. Tutte, 1956. A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956), 99-116. MR 18, 408. [p. 1146] MR 81471
  • W. T. Tutte, 1960a. Convex representations of graphs, Proc. London Math. Soc. (3) 10 (1960), 304-320. MR 22 #5593. [p. 1138] MR 114774
  • W. T. Tutte, 1960b. A non-Hamiltonian planar graph, Acta Math. Acad. Sci. Hungar. 11 (1960), 371-375. MR 25 #4517. [p. 1143] MR 141104
  • W. T. Tutte, 1961. A theory of 3-connected graphs, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 441-455. MR 25 #3517. [p. 1138] MR 140094
  • W. T. Tutte, 1963. How to draw a graph, Proc. London Math. Soc. (3) 13 (1963), 743-767. MR 28 #1610. [p. 1138] MR 158387
  • W. T. Tutte, 1968. On the enumeration of planar maps, Bull. Amer. Math. Soc. 74 (1968), 64-74. MR 36 #1363. [p. 1173] MR 218276
  • S. Ulam, 1960. A collection of mathematical problems, Interscience Tracts in Pure and Appl. Math., no. 8, Interscience, New York, 1960. MR 22 #10884. [p. 1181] MR 120127
  • M. Vaccaro, 1954. Sulla caratteristica dei complessi simpliciali n-dimensionali , Proc. Internat. Congress Math. (Amsterdam, 1954) vol. 2, pp. 261-262. [p. 1149]
  • M. Vaccaro, 1956. Sulla caratteristica dei complessi simpliciali , Ann. Mat. Pura Appl. (4) 41 (1956), 1-20. MR 17, 1120. [p. 1149] MR 77936
  • W. Volland, 1957. Ein Fortsetzungssatz für additive Eipolyederfunktionale im euklidischen Raum, Arch. Math. 8 (1957), 144-149. MR 19, 1074. [p. 1166] MR 92176
  • K. Wagner, 1936a. Bemerkungen zum Vierfarbenproblem, Jber. Deutsch. Math. Verein. 46 (1936), 26-32. [p. 1138]
  • K. Wagner, 1936b. Ein Satz über Komplexe, Jber. Deutsch. Math. Verein. 46 (1936), 21-22. [p. 1143]
  • D. W. Walkup, 1970. The lower bound conjecture for 3- and 4-manifolds, Acta Math, (to appear), [p. 1153] MR 275281
  • H. Walther, 1965. Ein kubischer, planarer, zyklisch fünffach zusammenhängender Graph, der keinen Hamiltonkreis besitzt, Wiss. Z. Techn. Hochsch. Ilmenau 11 (1965), 163-166. MR 33 #70. [p. 1144] MR 191843
  • H. Walther, 1966. Über das Problem der Existenz von Hamiltonkreisen in planaren regulären Graphen der Grade3, 4, und5, Thesis, Techn. Hochschule Ilmenau, 1966. [p. 1144]
  • H. Walther, 1967. Über die Anzahl der Knotenpunkte eines längsten Kreises in planaren, kubischen, dreifach knotenzusammenhängenden Graphen, Studia. Sci. Math. Hungar. 2 (1967), 391-398. MR 36 #1364. [p. 1146] MR 218277
  • H. Walther, 1968. On the problem of the existence of Hamilton-lines in planar regular graphs, Proc. Colloq, Theory of Graphs (Tihany, 1966) Academic Press, New York; Akad. Kiadó, Budapest, 1968, pp. 341-343. [p. 1144]
  • H. Walther, 1969a. Über das Problem der Existenz von Hamiltonkreisen in planaren, regulären Graphen, Math. Nachr. 39 (1969), 277-296. [p. 1144] MR 258669
  • H. Walther, 1969b. Über die Nichtexistenz eines Knotenpunktes durch den alle längsten Wege eines Graphen gehen, J. Combinatorial Theory 6 (1969), 1-6. MR 38 #4352. [p. 1147] MR 236054
  • M. E. Watkins, 1968. On the existence of certain disjoint arcs in graphs, Duke Math. J. 35 (1968), 231-246. MR 36 #6316. [p. 1134] MR 223268
  • M. E. Watkins and D. M. Mesner, 1967. Cycles and connectivity in graphs, Canad. J. Math. 19 (1967), 1319-1328, MR 36 #1355. [p. 1134] MR 218268
  • Hassler Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932), no. 2, 339–362. MR 1501641, https://doi.org/10.1090/S0002-9947-1932-1501641-2
  • L. Woo, 1969. An algorithm for straight-line representation of simple planar graphs, J. Franklin Inst. 287 (1969), 197-208. MR 39 #4045. [p. 1138] MR 242716
  • W.-T. Wu, 1965. A theory of imbedding, immersion, and isotopy of polytopes in a euclidean space, Science Press, Peking, 1965. MR 35 #6146. [p. 1157] MR 215305
  • J. Zaks, 1968. On minimal complexes and decompositions of E, Ph. D. Thesis, University of Washington, Seattle, Wash., 1968. [p. 1135] MR 243533
  • J. Zaks, 1969. On a minimality property of complexes, Proc. Amer. Math. Soc. 20 (1969), 439-444. MR 39 #946. [p. 1135] MR 239589
  • J. Zaks, 1970a. The analogue of Eberhard's theorem for 4-valent graphs on the torus(to appear).[p. 1140]
  • J. Zaks, 1970b. On realizing symmetric 3-polytopes(to appear), [p. 1183] MR 298544
  • J. Zaks, 1970c. The analogue of Eberhard's theorem for 4-valent graphs on the torus, Israel J. Math. (to appear). [p. 1183] MR 281654

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 52A25, 52A40, 05C10, 05C30, 05C35, 05C99, 28A75, 41A63, 50B15, 50B25, 50D25, 52A20, 53C65, 55A15, 55A20, 55B99, 57A35, 57A99, 90C99, 94A10, 94A20

Retrieve articles in all journals with MSC (1970): 52A25, 52A40, 05C10, 05C30, 05C35, 05C99, 28A75, 41A63, 50B15, 50B25, 50D25, 52A20, 53C65, 55A15, 55A20, 55B99, 57A35, 57A99, 90C99, 94A10, 94A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1970-12601-5

American Mathematical Society