A CHARACTERIZATION THEOREM
FOR CELLULAR MAPS

BY WILLIAM HAVER

Communicated by Steve Armentrout, March 26, 1970

Introduction. The main result of this paper is that a mapping \(f \) of the \(n \)-sphere \(\partial B^{n+1}, n \neq 4 \), onto itself is cellular if and only if \(f \) has a continuous extension which maps the interior of the \(n+1 \) ball \(B^{n+1} \) homeomorphically onto itself. Since a map of a 2-sphere onto itself is cellular if and only if it is monotone, this theorem extends a result of Floyd and Fort [6], who prove the corresponding theorem for monotone maps on a 2-sphere.

Preliminaries. A compact mapping \(f : M^n \to X \) is cellular if for each \(x \in X \), there is a sequence \(C_1, C_2, \ldots \) of topological \(n \)-cells such that \(f^{-1}(x) = \bigcap_{i=1}^\infty C_i \) and \(C_{i+1} \subset \text{Int}C_i \). If \(X \) is a topological space, \(H(X) \) is the group of all homeomorphisms of \(X \) onto itself. Edwards and Kirby showed that for any compact manifold \(M \), \(H(M) \) is locally contractible and therefore uniformly locally arcwise connected. It was shown [7] that any mapping of a manifold onto itself which can be uniformly approximated by homeomorphisms is cellular. (See also [4] by Armentrout \(n = 3 \) [1] and Siebenmann \(n \geq 5 \) [10] have proven that any cellular mapping of a manifold onto itself can be uniformly approximated by homeomorphisms.

Lemma 1. Suppose \(f : \partial B^n \to \partial B^n \) can be approximated by homeomorphisms. Then \(f \) can be extended to a map which is a homeomorphism on the interior of \(B^n \).

Proof. Since \(f \) can be uniformly approximated by homeomorphisms and \(H(\partial B^n) \) is uniformly arcwise connected, there is an arc \(\Phi \) such that \(\Phi_t = f \) and \(\Phi_0 \in H(\partial B^n) \), for \(0 \leq t < 1 \). Each point of \(B^n \) can be represented in the form \(tx \), where \(x \in \partial B^n \) and \(0 = t = 1 \). We define \(F : B^n \to B^n \) by \(F(tx) = t\Phi_t(x) \), for all \(x \in \partial B^n \). We note that \(F \) is continuous, extends \(f \) and is a homeomorphism when restricted to the interior of \(B^n \).

Therefore, if \(n \neq 4 \) and \(f : \partial B^{n+1} \to \partial B^{n+1} \) is cellular \(f \) can be extended to a map which is a homeomorphism on the interior of \(B^{n+1} \).

AMS 1970 subject classifications. Primary 5460; Secondary 5701.

Key words and phrases. Cellular maps, monotone maps, extending mappings, UV* maps.

1 This paper represents a portion of the author's Ph.D. thesis, written under the direction of Louis F. McAuley to be presented to the faculty of the State University of New York at Binghamton.

1277
A map has property \(UV^\infty \) if for each \(x \) and each open set \(U \) containing \(f^{-1}(x) \), there is an open set \(V \) containing \(f^{-1}(x) \) such that \(V \subseteq U \) and \(V \) is null-homotopic in \(U \).

Lemma 2. Let \(M \) be a manifold and \(F : M \times (0, 1] \to M \times (0, 1] \) be a map such that \(F^{-1}(M \times 1) = M \times 1 \) and \(F/M \times (0, 1) : M \times (0, 1) \to M \times (0, 1) \) is a homeomorphism, then \(F/M \times 1 : M \times 1 \to M \times 1 \) is a \(UV^\infty \) map.

Proof. We identify \(M \) with \(M \times 1 \). We make use of the following auxiliary maps: for each \(\partial \), define \(\pi_\partial : M \to M \times (1 - \partial) \) by \(\pi_\partial(x) = (x, 1 - \partial) \) and \(\rho : M \times (0, 1] \to M \) by \(\rho(x, t) = (x, 1) = x \).

Let \(U' \) be open in \(M \) with \(f^{-1}(b) \subseteq U' \). \(U' \times (0, 1] \) is open in \(M \times (0, 1] \). Therefore, there is a \(U \) such that:

1. \(U \) is open in \(M \times (0, 1] \).
2. \(U \subseteq U' \times (0, 1] \).
3. \(f(U) \) is open in \(M \times (0, 1] \).
4. \(f^{-1}(b) \subseteq U \).

Now choose \(t_0 < 1 \) and an open cylinder, \(C \), about \(b \times [t_0, 1] \) such that \(C \subseteq \{f(U)\} \). We note that:

\(f^{-1}(C) \) is open in \(M \times (0, 1] \), \(f^{-1}(C) \subseteq U \), \(f^{-1}(b \times [t_0, 1]) \subseteq f^{-1}(C) \).

Let \(\eta = \delta(b, C) ; \eta > 0 \). Let \(\delta \) be chosen so that

1. \(N_\delta(f^{-1}(b)) \subseteq f^{-1}(C) \).
2. \(d(x, y) < 2\delta \Rightarrow d(f(x), f(y)) < \eta \).

Let \(V = N_\delta(f^{-1}(b)) \cap M \). We note that if \(x \) is an element of \(\pi_\partial(V) \), then \(f(x) \) is an element of \(N_\delta(b) \cap M \times (0, 1) \subseteq C \).

Since \(C \) is a cell we can define a homotopy \(G : C \times I \to C \) so that

1. \(x \in C \Rightarrow G(x, t) \in C \cap (M \times (0, 1)) \).
2. \(G(x, 0) = x \).
3. \(\exists s \in M \times (0, 1) \) such that \(G(x, 1) = s \), for all \(x \in C \).

We now can define the desired homotopy \(H : V \times I \to U' \), by \(H(x, t) = pf^{-1}(G(f\pi_\partial(x), t)) \). Thus, \(H(x, 0) = pf^{-1}[G(f\pi_\partial(x), 0)] = pf^{-1}(f\pi_\partial(x)) = x \).

\[H(x, 1) = pf^{-1}[G(f\pi_\partial(x), 1)] = pf^{-1}(x) = \text{constant}. \]

The continuity of \(f \) follows from that of \(G \), so all that remains to be shown is that \(H(x, t) \in U' \), for all \(x \in V \), \(\forall t \in I \).

\[x \in V \Rightarrow \pi_\partial(x) \in \pi_\partial(V) \Rightarrow f(\pi_\partial(x)) \in C \cap M \times (0, 1) \]
\[\Rightarrow G(f\pi_\partial(x), t) \in C \cap B^\partial \Rightarrow \]

that \(f^{-1} \) is defined and \(f^{-1}[G(f\pi_\partial(x), t)] \in f^{-1}(C) \subseteq U \subseteq U' \times (\frac{1}{2}, 1] \).

Thus \(P(f^{-1}[G(f\pi_\partial(x), t)]) = H(x, t) \in U' \).
Let $M \subset X$. M is collared if there is a homeomorphism $h : M \times (0, 1] \to \text{nbd of } M$ such that $h(m, 1) = m$, for all $m \in M$. M. Brown proved that the boundary of any manifold with boundary is collared [3]. Therefore, we have the following corollary.

Corollary. Let M be a manifold with boundary and let $f : M \to M$ be such that f restricted to the interior of M is a homeomorphism. Then $f/\partial M$ is a UV$^\infty$-map.

Using McMillan's criteria for cellularity, [9] it can easily be shown that if $f : M^n \to M^n$ is a UV$^\infty$-map and if $M^n = S^3$ or $n \geq 5$, then f is a cellular map. (Cf., Armentrout and Price [2] or Lacher [8].) We therefore have the following theorem:

Theorem. A mapping f of the n-sphere ∂B^{n+1}, $n \neq 4$, onto itself is cellular iff f has a continuous extension which maps the interior of B^n homeomorphically onto itself.

Corollary. Let M be an m-manifold, $n \geq 5$, with boundary. Let f be a map of M onto M such that $f/\text{Int } M : \text{Int } M \to \text{Int } M$ is cellular and $f/\partial M : \partial M \to \partial M$. Then $f/\partial M$ is a UV$^\infty$ map. In particular, if $n \geq 6$, f/M is a cellular map.

Proof. Define $g : \text{Int } M \to (0, \infty)$ by $g(m) = d(m, \partial M)$. Since $f/\text{Int } M$ is a cellular map, by Siebenmann’s theorem there is a homeomorphism h such that for all $x \in \text{Int } M$, $d(f(x), h(x)) < g(f(x))$. We define $F : M \to M$ by

$$F(x) = h(x), \quad x \in \text{Int } M,$$

$$= f(x), \quad x \in \partial M.$$

F is continuous, for suppose there is a sequence, x_n, of points in $\text{Int } M$ which converge to $x \in \partial M$. Let $\epsilon > 0$ be given. By the continuity of f, $\exists N \ni n > N \Rightarrow d(f_n(x), f(x)) < \epsilon/2$. Then for such n,

$$d(F(x_n), F(x)) = d(h(x_n), f(x)) \leq d(h(x_n), f(x_n)) + d(f(x_n), f(x)) < \epsilon.$$

Thus, by Lemma 2, $F/\partial M = f/\partial M$ is a UV$^\infty$ map.

Armentrout’s approximation theorem [1] and results of E. E. Floyd [5] make it possible to prove the corresponding result for three manifolds: For such M, if $f : M \to M$ is a proper map such that $f/\text{Int } M$ is cellular, then $f/\partial M$ is cellular.

References

State University of New York at Binghamton, Binghamton, New York 13901