THE ORDER OF THE IMAGE OF THE
J-HOMOMORPHISM

BY MARK MAHOWALD

Communicated by Raoul Bott, June 4, 1970

ABSTRACT. This note announces a proof of the order of the
image of the J-homomorphism and gives several other results in
homotopy theory which are consequences of the proof.

The set Ω^nS^n can be identified with the set of all base point pre­
serving maps of S^n into itself. $SO(n)$, acting on S^n as R^n with a point
at infinity, is also a set of base point preserving maps of S^n onto itself. This defines $SO(n) \subset \Omega^nS^n$. The induced map in homotopy is
called the J-homomorphism. If we allow n to go to infinity we have
the stable J-homomorphism. By Bott’s results $[3]$ $\pi_j(SO) = Z, j \equiv -1 \mod 4, and =Z_2j=0, 1 \mod 8, j>0, and zero otherwise.

Adams $[1]$ showed that the Z_2 summand maps monomorphically
and Milnor and Kervaire $[6]$ showed that the Z group in dimension
$4j-1$ maps nontrivially and its image generates a subgroup of at
est least a certain order λ_j. Adams $[1]$ showed that the order was either
λ_j or $2\lambda_j$ and if $j \equiv 1 \mod 2$ it was λ_j. Thus only the two primary part is
in question and there only for $j \equiv 0 \mod 2$. Let λ_j be the two primary
part of λ_j. If $4j \equiv 2\rho(j) \mod 2\rho(j)+1$ (which defines $\rho(j)$) then $\lambda_j = 2\rho(j)+1$.

We prove:

THEOREM 1. The 2-primary order of the image of J in stem $4j-1$ is λ_j.

The proof has several corollary results which have some interest.
The first result is rather technical but still has some interest. The
naming of elements in $H^{**}(A)$ is that given in $[5]$.

THEOREM 2. The elements $P_{i}c_0, P_{i}h_1c_0, i \geq 1, P_{i}h_2, i \geq 1$, in $H^{**}(A)$
represent the image of J in dimension $j \equiv 0, 1, 3 \mod 8$. In dimension
$8j-1$ the “tower” which ends at the “Adams edge” represents the image
of J in that dimension.

These elements were known to have the desired e-invariant
property $[1]$ and were believed to be in J. Their Whitehead product
behavior has been investigated ([2] and [4], for example).

Let $M = Z_2 + Z_2$ (be the module over A with one generator; μ in

AMS 1970 subject classifications. Primary 55E10, 55E50, 55H15.

Key words and phrases. Stable homotopy groups of spheres, J-homomorphism,
cohomology of the Steenrod algebra.

1310
THE ORDER OF THE IMAGE OF THE J-HOMOMORPHISM

Let \(P(x_1, \cdots) \) be a polynomial algebra on generators \(x_i \) with bidegree \((2, 2i+2+1)\). Consider the differential \(d(x_i) \rightarrow x_{i-1}^2 x_1 \) in \(P \). Let \(H(d) \) be the homology under \(d \) and \(B(d) = \text{im} \, d \).

For \(\alpha \in P \) let the bidegree of \(\alpha \) be \((\alpha_s, \alpha_t)\). We will be only interested in the values of \(\alpha_s \) modulo 4 and \(\alpha_t \) modulo 12 so take \((\alpha_s, \alpha_t)\) so that \(\alpha_s \equiv \alpha'_s \pmod{4} \), \(\alpha_t \equiv \alpha'_t \pmod{4} \) but \(5\alpha_s \leq \alpha_t - \alpha_s \).

Theorem 3. If \(5s \geq t - s + \epsilon \) where \(\epsilon \) depends on the congruence class of \(s \) mod 4 and \(\epsilon \leq 6 \), then

\[
\text{Ext}^s_{A}(M, \mathbb{Z}_2) = \sum_{\alpha \in H(d)} \text{Ext}^{s-\alpha_s, t-\alpha_t}_{A}(M \otimes A/ A_1, \mathbb{Z}_2)
\]

\[
\bigoplus \sum_{\alpha \in B(d)} \text{Ext}^{s-\alpha_s, t-\alpha_t}_{A}(M \otimes A/ A(Sq^1, Sq^2), \mathbb{Z}_2).
\]

Corollary 4. If \(Q \) is an \(A \) module which is free over \(A_1 \), the subalgebra generated by \(Sq^1 \) and \(Sq^2 \), then \(\text{Ext}^s_A(Q, \mathbb{Z}_2) = 0 \) for \(5s \geq t - s + \epsilon \).

Theorem 5. Let \(X \) be a space in the stable category so that \(\Sigma X = RP^2 \). If \(E_r(X) \) is the Adams spectral sequence converging to \(\pi^A_*(X) \), then \(E^s_r(X) = 0 \) for \(5s \geq t - s + \epsilon \) unless

\[
s = 4k, \quad t - s = 8k, \quad 8k + 1, \quad 8k + 2,
\]

\[
= 4k + 1, \quad t - s = 8k + 1, \quad 8k + 2, \quad 8k + 3,
\]

\[
= 4k + 2, \quad t - s = 8k + 2, \quad 8k + 3, \quad 8k + 7,
\]

\[
= 4k + 3, \quad t - s = 8k + 4, \quad 8k + 8, \quad 8k + 9,
\]

in which cases the groups are \(\mathbb{Z}_2 \).

These elements represent the generators of the image of \(J \) and \(\mu_i \) \cite{1} on the bottom cell and the elements of order two in the \(\text{im} \, J \) and \(\mu_i \) coextended on the top cell.

Theorem 6. There is a space \(\text{Im} \, J \) and a map \(f: S^8 \rightarrow \text{Im} \, J \) so that \(f_* \) maps the image of \(J \) and the \(\mu \)'s monomorphically onto the homotopy of \(\text{Im} \, J \).

In \cite{1} a map \(f: \Sigma^8 X \rightarrow X \) which represents an extension of a coextension of \(8 \sigma \) is studied. There it is proved that all iterations of \(f \) are essential.

Theorem 7. If \(\alpha: S^8 \rightarrow X \) is a stable map then

\[
\xymatrix{ S^{k+bj} \ar[r]^{\Sigma^j \alpha} & \Sigma^{bj} X \ar[r]^{f^j} & X }
\]
is inessential for some j unless α is in one of the classes given by Theorem 5.

Some comments on the proof. Let the spectrum bo be the connected BO spectrum. Then we construct a Novikov resolution of S as follows

$$
\cdots \\
S_s \to S_s \wedge bo \\
\cdots \\
S_1 \to S_1 \wedge bo \\
S \to S \wedge bo.
$$

We apply the E_2 of the Adams spectral sequence to this tower and get a spectral sequence which converges to $\mathcal{H}^{**}(A)$ except for $s=t$. If we consider the resolution $X \wedge S_s$, where X is defined in Theorem 5, we can make an explicit calculation. Let

$$
E_1^{s,t} = \text{Ext}^t_{A}(\mathcal{H}^{s}(X \wedge S_s \wedge bo), \mathbb{Z}_2).
$$

Proposition 8. $E_2^{s,t} = \sum_{a \in \mathbb{F}_2} \text{Ext}^{s-a,t-a}(M \otimes A//A_1, \mathbb{Z}_2)$ for $s>\sigma$ where P^s is the set of σ-degree polynomials in the polynomial algebra introduced above.

Proposition 9. $E_3^{s,t} = E_\infty^{s,t}$ for $s>\sigma$ and thus is given by Theorem 3.

Note that Proposition 9 alone gives an edge of $3\sigma > t-2$. The sharpened version of Theorem 3 follows from Proposition 9 and a closer analysis of the nature of $\text{Ext}_n^t(M, \mathbb{Z}_2)$.

The most direct route from Proposition 8 to the main theorem requires a geometric realization of the E_2 term of the above spectral sequence for S. Using this resolution and the homotopy functor we get a spectral sequence whose $E_2^{s,t}$ term has an edge of $5\sigma \geq t - \sigma + \epsilon$. The image of J has filtration 1. From this information the order of $\text{im} J$ should follow directly but no direct route has been found. Hence to complete the argument, consider the space Y which is the fiber of the map $S \to K(\mathbb{Z}, 0)$, and consider the resolution of Y given by

$$
\cdots \to Y \wedge S_0 \to Y \wedge S_{-1} \to \cdots.
$$

Calculation of the sort given in the proof of III 7.3 of [4] and applied to elements of filtration zero and one give a proof of Theorems 1 and 2.

References

Northwestern University, Evanston, Illinois 60201