DEFORMATIONS OF LIE SUBGROUPS

BY R. W. RICHARDSON, JR.¹

Communicated by Louis Auslander, April 3, 1970

1. Introduction. This note is an announcement of results concerning the local deformation theory of subgroups of a Lie group. Let \(G \) be a real (resp. complex) Lie group and let \(M \) be a real (resp. complex)-analytic manifold. Roughly speaking, an analytic family of Lie subgroups of \(G \), parametrized by \(M \), is an analytic submanifold \(\mathfrak{X} \) of \(G \times M \) such that each "fibre" \(H_t \) is a Lie subgroup of \(G \); here the "fibre" \(H_t \) is defined by \(\mathfrak{X} \cap (G \times \{t\}) = H_t \times \{t\} \). (See §2 for a precise definition of an analytic family of Lie subgroups.) Our main result concerning such families is

Theorem A. Let \(\mathfrak{X} = (H_t)_{t \in M} \) be an analytic family of Lie subgroups of \(G \), let \(t_0 \in M \) and let \(H = H_{t_0} \). Let \(K \) be a Lie subgroup of \(H \) such that the component group \(K/K^0 \) is finitely generated and such that the Lie group cohomology space \(H^1(K, \mathfrak{g}/\mathfrak{h}) \) vanishes. Then there exists an open neighborhood \(U \) of \(t_0 \) in \(M \) and an analytic map \(\beta : U \rightarrow G \) such that \(KS_0 \beta(t)H_0 \beta(t)^{-1} \) for every \(t \in U \).

Here \(\mathfrak{g} \) (resp. \(\mathfrak{h} \)) denotes the Lie algebra of \(G \) (resp. \(H \)) and the \(K \)-module structure of \(\mathfrak{g}/\mathfrak{h} \) is determined by the adjoint representation of \(K \) on \(\mathfrak{g} \).

Theorem A generalizes the result of A. Weil [6, p. 152] which states that if \(\Gamma \) is a discrete, finitely generated subgroup of \(G \) such that \(H^1(\Gamma, \mathfrak{g}) = 0 \), then \(\Gamma \) is "rigid". It also generalizes results of the author [4], [5] on deformations of subalgebras of Lie algebras to the case of Lie subgroups. The proof of Theorem A depends heavily on the analyticity assumptions, although we suspect that the \(C^\infty \) version of the theorem is also true.

If \(G \) acts as an analytic transformation group on the analytic manifold \(M \) and if all orbits of \(G \) on \(M \) have the same dimension, then it can be shown that the connected isotropy groups \((G_{0}^0)_{t \in M} \) form an analytic family of Lie subgroups of \(G \), and hence Theorem A applies. For example, let \(K \) be a maximal compact subgroup of \(G_{0}^0 \). Then

¹ Partial support received from National Science Foundation Grant GP-11844.

AMS 1969 subject classifications. Primary 2250; Secondary 2240, 1450.

Key words and phrases. Lie groups, deformations, analytic transformation groups, algebraic transformation groups.
DEFORMATIONS OF LIE SUBGROUPS

93

$H^1(K, g/\mathfrak{g}_t) = 0$ and thus there exists a neighborhood U of t such that G^s_t contains a subgroup conjugate to K for every $s \in U$. For the case of algebraic transformation groups (over C) one gets considerably stronger theorems along the same line.

2. Analytic families of Lie subgroups. Analytic manifolds and Lie groups are taken over either the field R of real numbers or the field C of complex numbers. Analytic submanifolds and Lie subgroups are defined as in [2]; in particular analytic submanifolds and Lie subgroups are not required to have the topology induced by the ambient manifold. The Lie algebra of a Lie group G will be denoted by the corresponding German letter \mathfrak{g} and the connected component of the identity in G will be denoted by G^0.

Definition 2.1. Let G be a Lie group and let M be an analytic manifold. Then an analytic family of Lie subgroups of G, parametrized by M, is an analytic submanifold \mathcal{X} of $G \times M$ which satisfies the following conditions:

(a) Let $\pi_M: \mathcal{X} \to M$ denote the composition $\text{pr}_M \circ i$, where $i: \mathcal{X} \to G \times M$ is the inclusion map and pr_M is the projection $G \times M \to M$. Then π_M is surjective and is a submersion.

(b) Each fibre $\pi_M^{-1}(t)$ ($t \in M$) is of the form $H_t \times \{t\}$, where H_t is a Lie subgroup of G.

(c) Let $\mathcal{X} \times_M \mathcal{X} = \{(a, b) \in \mathcal{X} \times \mathcal{X} \mid \pi_M(a) = \pi_M(b)\}$ and let $m: \mathcal{X} \times_M \mathcal{X} \to \mathcal{X}$ be defined by $m((x, t), (y, t)) = (xy, t)$ and $s(x, t) = (x^{-1}, t)$. Then m and s are analytic maps.

It follows from the definition that the function $t \to \text{dim } H_t$ is constant on each component of M.

3. Sketch of the proof of Theorem A. Let F denote either R or C. Since the problem is local, we may assume that M is an open neighborhood of 0 in F^r and that $t_0 = 0$. We let W be a vector subspace of \mathfrak{g} which is complementary to \mathfrak{h}. If $\pi: \mathfrak{g} \to \mathfrak{g}/\mathfrak{h}$ is the canonical projection, then the restriction π_W of π to W is a vector space isomorphism of W and $\mathfrak{g}/\mathfrak{h}$; we define a K-module structure on W by transferring the K-module structure on $\mathfrak{g}/\mathfrak{h}$ to W by means of π_W. Let $\eta: K \to \text{GL}(W)$ denote the corresponding representation.

The following lemma is proved by a straightforward application of the implicit function theorem.

Lemma 3.1. There exists an open neighborhood U of $H \times \{0\}$ in $H \times M$ and an analytic map $\psi: U \to W$ such that the following conditions hold for all $(x, t) \in U$:

(a) $\psi(x, 0) = 0$;

(b) $(\exp \psi(x, t))x \in H_t$;
(c) the map \((x, t) \mapsto (\exp \psi(x, t)x, t)\) is an analytic diffeomorphism of \(U\) onto an open neighborhood of \(H \times \{0\}\) in \(\mathcal{C}\).

The function \(\psi\) is called the normal displacement function of the family \(\mathcal{C}\). The germ of \(\psi\) in a neighborhood of \(H \times \{0\}\) is uniquely determined by the family \(\mathcal{C}\).

For each \(x \in K\), the map \(\psi_x: t \mapsto \psi(x, t)\) is an analytic map of an open neighborhood \(U_x\) of 0 in \(M\) into \(W\). Thus we may expand \(\psi_x\) in a convergent power series about 0,

\[
\psi_x(t) = \sum_{m=1}^{\infty} P_m(x, t),
\]

where, for each \(m\), \(t \mapsto P_m(x, t)\) is the restriction to \(U_x\) of a homogeneous polynomial map of degree \(m\) of \(F^r\) into \(W\); denote this homogeneous polynomial map by \(Q_m(x)\). If \(\mathcal{O}_m\) denotes the vector space of all homogeneous polynomial maps of \(F^r\) into \(W\), then \(Q_m: K \to \mathcal{O}_m\) is an analytic map. Let \(s\) denote the smallest integer \(j\) such that \(Q_j \neq 0\). \(Q_s\) is called the first nonvanishing infinitesimal displacement along \(K\) of the analytic family \(\mathcal{C}\).

We define a \(K\)-module structure on \(\mathcal{O}_m\) as follows: If \(x \in K\) and \(Q \in \mathcal{O}_m\), then \(x \cdot Q = \eta(x) \circ Q\). It follows easily from the hypothesis that \(H^1(K, \mathcal{O}_m) = 0\).

Proposition 3.2. \(Q_s\) is a one cocycle of \(K\).

Since \(H(K, \mathcal{O}_s) = 0\), it follows from Proposition 2.2 that there exists \(\phi_s \in \mathcal{O}_s\) such that \(P_s(x, t) = \phi_s(t) - x \cdot \phi_s(t)\) for \(x \in K\) and \(t \in U_x\). Using this, it can be shown that if we replace the analytic family \(\mathcal{C}\) by the family

\[
\mathcal{C}' = (\exp \phi_s(t))H_t(\exp - \phi_s(t))_{t \in M},
\]

then the first nonvanishing infinitesimal displacement along \(K\) of the analytic family \(\mathcal{C}'\) is of degree \(\geq s+1\).

Continuing inductively, we can define an infinite family \((\phi_u)_{u=s, s+1, \ldots}\), where \(\phi_u\) is a homogeneous polynomial map of \(F^r\) into \(W\) of degree \(u\), such that the following condition holds: let \(u \geq s\), let \(\phi^u = \phi_s + \phi_{s+1} + \cdots + \phi_u\) and let \(\mathcal{C}_u\) denote the analytic family \((\exp \phi^u(t))H_t(\exp - \phi^u(t))_{t \in M}\); then the first nonvanishing infinitesimal displacement of the family \(\mathcal{C}_u\) is of degree greater than \(u\).

Let \(\phi\) denote the formal power series map of \(M\) into \(W\) given by \(\phi = \phi_s + \phi_{s+1} + \cdots\). If \(\phi\) converges in a neighborhood of 0 and if \(\beta(t) = \exp \phi(t)\) then it is easy to see that \(\beta\) satisfies the conditions of Theorem A. At this point, we need to use a recent theorem of M.
Artin [1]. Very roughly, Artin’s theorem says that if a finite number of analytic equations admit a formal power series solution, then they admit a convergent power series solution. With some work, we can show that Artin’s theorem implies that the formal power series ϕ above can be chosen to be convergent, which proves Theorem A.

4. Applications to analytic transformation groups. Let the Lie group G act as an analytic transformation group on the analytic manifold M. If $t \in M$, then the subgroup $G_t = \{ g \in G \mid g \cdot t = t \}$ is called the isotropy group of G at t; the identity component G_0 is the connected isotropy group at t.

Proposition 4.1. Let G act on M as above and assume that all orbits of G on M have the same dimension. Then the family of connected isotropy groups $(G_0^t)_{t \in M}$ is an analytic family of Lie subgroups of G.

Thus we see that Theorem A applies to the situation above. A Lie group G is reductive if the component group G/G^0 is finite, if G admits a faithful finite-dimensional analytic representation and if every finite-dimensional analytic representation of G is completely reducible. If G is reductive and if $\rho: G \rightarrow \text{GL}(V)$ is an analytic representation of G, then it is easy to see that $H^1(G, V) = 0$.

Now let G and M be as in Proposition 4.1, let $t \in M$ and let K be a reductive subgroup of G_0^t. Then Theorem A implies that there exists a neighborhood U of t on M such that G_0^t contains a conjugate of K for every $y \in U$.

5. Applications to algebraic transformation groups. Let G be a complex linear algebraic group and let G act as an algebraic transformation group on the complex algebraic variety M.

Proposition 5.1. There exists a nonempty, Zariski-open subset U of M such that the family $(G_t)_{t \in U}$ is an analytic family of Lie subgroups of G.

If S is a complex linear algebraic group, then it is known (see [3]) that S admits a semidirect decomposition $S = R \cdot U$, where U is the unipotent radical of S and R is a reductive algebraic subgroup of S; R is determined to within conjugacy by elements of U. Such a decomposition is called a Levi decomposition of S.

Now let (G, M) be an algebraic transformation space as above and, for every $t \in M$, let $G_t = R^t \cdot U_t$ be a Levi decomposition of G_t. Then the following theorem is a consequence of Theorem A and Proposition 5.1.
Theorem B. There exists a finite family X_1, \ldots, X_n of Zariski-locally closed subsets of M such that the following conditions hold:

(a) $M = \bigcup_{i=1}^{n} X_i$.
(b) For each j, X_j is a Zariski-open subset of $M - \bigcup_{i=1}^{j} X_i$.
(c) If $x, y \in X_j$, then R_x and R_y are conjugate.
(d) For each j, the family $(U_i)_{i \in X_j}$ is an analytic family of Lie subgroups of G.

References