KOEBE SETS FOR UNIVALENT FUNCTIONS WITH TWO PREASSIGNED VALUES

BY MAXWELL O. READE¹ AND ELIGIUSZ J. ZŁOTKIEWICZ²

Communicated by W. H. J. Fuchs, July 30, 1970

1. Introduction. Let \(\mathcal{M}_M \) denote the set of all functions \(f(z) \) that are analytic and univalent in the unit disc \(\Delta \) and satisfy the conditions

\[
\begin{align*}
 f(0) &= 0, \quad f(z_0) = z_0, \quad |f(z)| \leq M, \\
 &\text{where } z_0 \text{ is a fixed point of } \Delta, \\
 &z_0 \neq 0, \quad \text{and where } M \text{ is fixed, } 1 < M \leq \infty.
\end{align*}
\]

Although the class \(\mathcal{M}_M \) has been a popular one to study, very little seems to have been done with \(\mathcal{M}_M \). We aim to correct this oversight by beginning a study of \(\mathcal{M}_M \). In this paper we obtain the exact value of the "Koebe constant" for \(\mathcal{M}_M \) and we determine the Koebe sets for

(i) the set \(\mathcal{M}_M^* \) consisting of those elements \(f(z) \) of \(\mathcal{M}_M \) for which \(f(\Delta) \) is starlike with respect to the origin, and

(ii) the set \(\mathcal{M}_M^{\infty} \) consisting of those members \(f(z) \) of \(\mathcal{M}_M \) for which \(f(\Delta) \) is convex in the direction \(e^{ia} \).

2. Main results. By the Koebe constant for \(\mathcal{M}_M \) we mean the radius of the largest disc, center at the origin, that lies in the set

\[
\bigcap \{ f(\Delta) \mid f \in \mathcal{M}_M \},
\]

the Koebe set for \(\mathcal{M}_M \).

THEOREM 1. The Koebe constant for \(\mathcal{M}_M \) is given by

\[
\frac{2^{s^2} - 2s(\delta^2 - M)}{2^{s^2} - 2s - M} = \frac{M - \|z_0\|}{1 - \|z_0\|}.
\]

This result is sharp.

Proof. First, there is no loss of generality here if \(z_0 \) is taken to be real and positive. Hence we set \(z_0 = r_0 > 0 \). Now we obtain the domain \(\Omega^* \) from the domain \(\Omega = f(\Delta) \) by a circular symmetrization with respect to the half-line \([0, r_0, \infty)\). The domain \(\Omega^* \) contains the origin

AMS 1969 subject classifications. Primary 3042, 3052.
Key words and phrases. Univalent function, Koebe constant, Koebe domain, starlike mapping, convex in one direction, hyperbolic measure, Green's function, bounded functions.

¹ The first author acknowledges support received under National Science Foundation Grant GP-11158.
² The second author acknowledges support received from I.R.E.X.

Copyright © 1971, American Mathematical Society
and it contains the point \(r_0 \); moreover, it is contained in a domain \(D_h \) which is the disc \(|w| < M \) slit along the segment \((-M, -h)\).

Well-known monotonic properties of the hyperbolic distance give us the inequalities

\[
\text{arc tgh } r_0 = \rho(0, r_0, \Omega) \geq \rho(0, r_0, \Omega^*)
\]

\[
\geq \rho(0, r_0, D_h) = \text{arc tgh } |\phi(r_0)|,
\]

where \(w = \phi(z) \) is a function that maps \(\Delta \) conformally onto \(D_h \) subject to the condition \(\phi(0) = 0 \). A computation involving \(\phi(z) \) shows that (2) holds if (1) holds, with \(z_0 = r_0 \). The equality sign in (1) holds for the function \(f(z) \) defined by

\[
\frac{f(z)}{[M - e^{-\alpha f(z)}]^2} = \left(1 - \left| \frac{z}{z_0} \right| \right)^2 \frac{z}{(1 - e^{-\alpha z})^2}, \quad z_0 = r_0 e^{i\alpha}.
\]

This completes the proof of Theorem 1.

Remark. For \(M = \infty \), (1) gives us a result due to Lewandowski [3], and for \(z_0 = 0 \), (1) yields a result due to Pick [5].

Now we shall determine the Koebe set for \(\mathfrak{M}_M^* \), the set of elements of \(\mathfrak{M}_M \) that map \(\Delta \) onto domains that are starlike with respect to the origin.

First we recall some facts about Koebe sets. If \(\mathfrak{E} \) is a nonempty set of functions \(f(z) \), analytic in \(\Delta \), then the **Koebe set** of \(\mathfrak{E} \) is the set

\[
\mathfrak{K}(\mathfrak{E}) = \bigcap \{ f(\Delta) \mid \mathfrak{E} \}, \quad [1].
\]

However, for the set \(\mathfrak{M}_M^* \), Krzyż and Zlotkiewicz found another characterization of \(\mathfrak{K}(\mathfrak{M}_M^*) \). Let \(\Delta_M \) denote the disc \(|w| < M \) and let \(\mathcal{G} \) denote the set of all subdomains \(D \) of \(\Delta_M \) that (i) are starshaped with respect to the origin, and (ii) contain the fixed point \(z_0 \). For \(D \in \mathcal{G} \), let \(g(w, z_0, D) \) be the Green’s function with pole at \(z_0 \) and let \(\mu(w_0) \) be defined by

\[
\mu(w_0) = \text{lub} \{ g(0, z_0, D) \mid D \in \mathcal{G}, w_0 \in \Delta_M \setminus D \}.
\]

Then the result due to Krzyż and Zlotkiewicz, alluded to above, is that

\[
\mathfrak{K}(\mathfrak{M}_M^*) = \left\{ w \mid \mu(w) < \log \frac{1}{|z_0|} \right\}
\]

holds [2].

Now if we make use of (3) and (4), then we obtain the following result.

Theorem 2. The set \(\mathfrak{K}(\mathfrak{M}_M^*) \) is determined by the condition

\[
|w - w_0| \left| \frac{M^2 - w_0^2}{M + |w|} \right| + \frac{1}{|w|} \left| \frac{Mw + z_0}{M + |w|} \right| < \frac{1}{2} (1 + |z_0|^2),
\]
and the Koebe set $\mathcal{K}(\mathfrak{M}_M^*)$ is determined by the inequality

$$(5) \quad |w - z_0| + |w| < \frac{1}{2}(1 + |z_0|^2).$$

Remark. The elliptic domain (5) is a well-known one due to Rogosinski [6].

The formula in (4) can be applied to other subclasses of \mathfrak{M}_M. For example, we have found the following result.

Theorem 3. The Koebe set $\mathcal{K}(\mathfrak{M}_M^*)$ is determined by the inequality

$$1 + [A(1 + \cos 2\theta) + (B^2 - 1) \cos 2\theta + BC \sin 2\theta]^{1/2} < \frac{1 - (1 - D^2)^{1/2}}{|z_0|^2},$$

where

$$h = |w|, \quad d = |w - z_0|, \quad \theta = \alpha - \arg z_0,$$

$$A = \frac{2hd}{(h + d)^2}, \quad B = \frac{h - d}{|z_0|}, \quad D = \frac{|z_0|}{h + d},$$

$$C = [(1 - D^2)(2A + D^2 - 1)]^{1/2}.$$

The set $\mathcal{K}(\mathfrak{M}_M^*)$ is a simply-connected Jordan domain if $|z_0| [1 + |\sin \theta|]^{1/2} < 1, \theta \neq 0, \pi$, while $\mathcal{K}(\mathfrak{M}_M^*)$ is the union of two disjoint simply-connected Jordan domains, which are symmetric with respect to the point $\frac{1}{2}z_0$, if $1 < |z_0| [1 + |\sin \theta|]^{1/2}, \theta \neq 0, \pi$.

Remark. For $z_0 = 0$ we obtain

$$\mathcal{K}(\mathfrak{M}_M^{*2}) = [w \mid s |w| (|w| + |\text{Im } w|) < 1],$$

which is related to a result due to McGregor [4].

References

University of Michigan, Ann Arbor, Michigan 48104

The Maria Curie-Skłodowska University, Lublin, Poland