IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The reducibility of Thom complexes and surgery on maps of degree $d$


Author: Max K. Agoston
Journal: Bull. Amer. Math. Soc. 77 (1971), 106-110
MSC (1970): Primary 55G35, 57D65; Secondary 57D40
DOI: https://doi.org/10.1090/S0002-9904-1971-12622-8
MathSciNet review: 0307255
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. K. Agoston, Browder-Novikov theory for maps of degree d>1. I, Topology 9 (3) (1970), 251-266. MR 264677
  • 2. William Browder, Homotopy type of differentiable manifolds, Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993) London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 97–100. MR 1388298, https://doi.org/10.1017/CBO9780511662676.006
  • 3. A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82. MR 26 #3069. MR 145538
  • 4. A. Haefliger, Knotted (4k-l)-spheres in 6k-space, Ann. of Math. (2) 75 (1962), 452-466. MR 26 #3070. MR 145539
  • 5. R. Lashof, Some theorems of Browder and Novikov on homotopy equivalent manifolds with an application, Notes, University of Chicago, Chicago, Ill. (note).
  • 6. J. Levine, On differentiable imbeddings of simply-connected manifolds, Bull. Amer. Math. Soc. 69 (1963), 806-809. MR 27 #5270. MR 155336
  • 7. J. Levine, A classification of differentiable knots, Ann. of Math. (2) 82 (1965), 15-50. MR 31 #5211. MR 180981
  • 8. J. Milnor, Lectures on the h-cobordism theorem, Princeton Univ. Press, Princeton, N. J., 1965. MR 32 #8352. MR 190942
  • 9. S. P. Novikov, Homotopically equivalent smooth manifolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 365-474; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 271-396. MR 28 #5445. MR 162246

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 55G35, 57D65, 57D40

Retrieve articles in all journals with MSC (1970): 55G35, 57D65, 57D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1971-12622-8

American Mathematical Society