Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

The $P$-singular point of the $P$-compactification for $\Delta u = pu$


Authors: Y. K. Kwon and L. Sario
Journal: Bull. Amer. Math. Soc. 77 (1971), 128-133
MSC (1970): Primary 3045, 3111
MathSciNet review: 0267119
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. John Chang and Leo Sario, Royden’s algebra on Riemannian spaces, Math. Scand. 28 (1971), 139–158. MR 0313967
  • 2. Moses Glasner and Richard Katz, On the behavior of solutions of Δ𝑢=𝑃𝑢 at the Royden boundary, J. Analyse Math. 22 (1969), 343–354. MR 0257344
  • 3. Y. K. Kwon and L. Sario, A maximum principle for bounded harmonic functions on Riemannian spaces, Canad. J. Math. 22 (1970), 847–854. MR 0425829
  • 4. Mitsuru Nakai and Leo Sario, A new operator for elliptic equations, and the 𝑃-compactification for Δ𝑢=𝑃𝑢, Math. Ann. 189 (1970), 242–256. MR 0279326
  • 5. H. L. Royden, The equation Δ𝑢=𝑃𝑢, and the classification of open Riemann sufaces, Ann. Acad. Sci. Fenn. Ser. A I No. 271 (1959), 27. MR 0121477
  • 6. L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970. MR 0264064

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 3045, 3111

Retrieve articles in all journals with MSC (1970): 3045, 3111


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1971-12631-9