The $P$-singular point of the $P$-compactification for $\Delta u = pu$

Authors:
Y. K. Kwon and L. Sario

Journal:
Bull. Amer. Math. Soc. **77** (1971), 128-133

MSC (1970):
Primary 3045, 3111

DOI:
https://doi.org/10.1090/S0002-9904-1971-12631-9

MathSciNet review:
0267119

Full-text PDF

References | Similar Articles | Additional Information

**1.**J. Chang and L. Sario,*Royden's algebra on Riemannian spaces*, Math. Scand. (to appear). MR**313967****2.**M. Glasner and R. Katz,*On the behavior of solutions of Δu=Pu at the Royden boundary*, J. Analyse Math. 22 (1969), 343-354. MR**257344****3.**Y. K. Kwon and L. Sario,*A maximum principle for bounded harmonic functions on Riemannian spaces*, Canad. J. Math, (to appear). MR**425829****4.**M. Nakai and L. Sario,*A new operator for elliptic equations, and the P-compactification for Δu=Pu*, Math. Ann. (to appear). MR**279326****5.**H. L. Royden,*The equation Δu=Pu, and the classification of open Riemann surfaces*, Ann. Acad. Sci. Fenn. Ser. AI No. 271 (1959), pp. 27. MR 22 #12215. MR**121477****6.**L. Sario and M. Nakai,*Classification theory of Riemann surfaces*, Die Grundlehren der math. Wissenschaften, Band 164, Springer-Verlag, Berlin and New York, 1970. MR**264064**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1970):
3045,
3111

Retrieve articles in all journals with MSC (1970): 3045, 3111

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1971-12631-9