THE STRUCTURE OF ω-REGULAR SEMIGROUPS

BY JANET AULT AND MARIO PETRICH

Communicated by R. S. Pierce, July 20, 1970

1. Finding the complete structure of regular semigroups of a certain class has succeeded only when sufficiently strong conditions on idempotents and/or ideals have been imposed. On the one hand, there is the theorem of Rees [7], giving the structure of completely 0-simple semigroups, and its successive generalizations to primitive regular semigroups [2], and 3- and 3i-regular semigroups [4]. On the other hand, with very different restrictions, Reilly [8] has determined the structure of bisimple ω-semigroups, Kočin [1] of inverse simple ω-semigroups, Munn [5] of inverse ω-semigroups.

An ω-chain with zero is a poset \(\{e_i | i \geq 0\} \cup 0 \) with \(e_i > e_j \) if \(i < j \), and \(0 < e_i \) for all \(i, j \). We call a regular semigroup \(S \) ω-regular if \(S \) has a zero and the poset of its idempotents is an orthogonal sum [2] of ω-chains with zero. We announce here the complete determination of the structure of such semigroups, including various special cases thereof, and briefly mention their isomorphisms.

2. An ω-regular semigroup can be uniquely written as an orthogonal sum of ω-regular prime (i.e., with 0 a prime ideal) semigroups. This reduces the problems of structure and isomorphism to ω-regular prime semigroups. We distinguish three cases: (i) 0-simple, (ii) prime with a proper 0-minimal ideal, (iii) prime without a 0-minimal ideal. Case (i) is the most difficult (and interesting) and includes a variety of special cases some of which reduce to those constructed by Reilly [8], Kočin [1], and Munn [5], [6].

3. Let \(A \) be a nonempty set, \(d \) be a positive integer, \(V \) be a semigroup which is a chain of \(d \) groups \(G_0 > G_1 > \cdots > G_{d-1} \), and \(\sigma \) be a homomorphism of \(V \) into \(G_0 \). Let \(w : A \rightarrow \{0, 1, \ldots, d-1\} \) be any function, denoted by \(w : \alpha \rightarrow w_\alpha \). For \(\alpha \in A \), \(0 \leq i, j < d \), define \(\langle \alpha, i \rangle \) by

\[
\langle \alpha, i \rangle = w_\alpha + i \pmod{d}, \quad 0 \leq \langle \alpha, i \rangle < d,
\]

and define \([i, \alpha, j]\) to satisfy

\[
[i, \alpha, j]d = (i - j) - (\langle \alpha, i \rangle - \langle \alpha, j \rangle).
\]
Construction I. On the set
\[S = \{(\alpha, m, g, n, \beta) | \alpha, \beta \in A, m, n \geq 0, g \in V\} \cup \{0, 1\} \]
define a multiplication by: for \(g_i \in G_i, g_j \in G_j, v = n - s = [i, \beta, j] \),
\[(\alpha, m, g_i, n, \beta)(\beta, s, g_j, t, \gamma) = (\alpha, m - [i, \alpha, j] - v, (g_i \sigma^{-v})g_j, t, \gamma) \]
if \(v < 0 \), or \(v = 0, i \leq j \);
\[(\alpha, m, g_i, n, \beta)(\beta, s, g_j, t, \gamma) = (\alpha, m, g_i(g_j \sigma^v), t + [i, \gamma, j] + v, \gamma) \]
if \(v > 0 \), or \(v = 0, i > j \);
and all other products are equal to 0. The set \(S \) with this multiplication will be denoted by \(\Theta(A, \omega; V, \sigma) \).

Construction II. On the set
\[S' = \{(\alpha, m, g, n, \beta) | \alpha, \beta \in A, m - w_a = n - w_b = i \pmod d, g \in G_i\} \cup \{0, 1\} \]
define a multiplication by: for \(g_i \in G_i, g_j \in G_j, v = n' - s' = [i, \beta, j] \),
where \(n = n'd + n'', s = s'd + s'', 0 \leq n'', s'' < d \),
\[(\alpha, m, g_i, n, \beta)(\beta, s, g_j, t, \gamma) = (\alpha, m + s - n, (g_i \sigma^{-v})g_j, t, \gamma) \]
if \(n \leq s \);
\[(\alpha, m, g_i, n, \beta)(\beta, s, g_j, t, \gamma) = (\alpha, m, g_i(g_j \sigma^v), t + n - s, \gamma) \]
if \(n > s \);
and all other products are equal to 0. The set \(S' \) with this multiplication will be denoted by \(\Theta(A, \omega; V, \sigma) \).

The following is our fundamental result.

Theorem 1. For a groupoid \(S \), the following statements are equivalent.
(i) \(S \) is a 0-simple \(\omega \)-regular semigroup;
(ii) \(S \) is isomorphic to \(\Theta(A, \omega; V, \sigma) \);
(iii) \(S \) is isomorphic to \(\Theta(A, \omega; V, \sigma) \).

The proof of “(i) \(\Rightarrow \) (ii)” consists of “introducing coordinates” into various \(\mathcal{L} \)- and \(\mathcal{R} \)-classes and of constructing the homomorphism \(\sigma \); it is quite long and is broken into a sequence of lemmas. For “(ii) \(\Rightarrow \) (iii)” one finds a suitable isomorphism, while “(iii) \(\Rightarrow \) (i)” consists of a verification of the defining properties of a 0-simple \(\omega \)-regular semigroup.

Define the \textit{top} of \(S \) in the theorem by
\[\Theta(S) = \{a \in S | e \mathcal{L} a, a \mathcal{R} f \text{ for some maximal idempotents } e, f\} \cup \{0, 1\} \]
Then \(\Theta(S) \) is a primitive inverse semigroup. It follows from the proof that we can always suppose that \(w_a = 0 \) for some \(\alpha \in A \). Call \(S \) balanced if any two maximal idempotents of \(S \) are \(\mathcal{D} \)-equivalent.

Theorem 2. The following conditions on a 0-simple \(\omega \)-regular semigroup \(S \) are equivalent.
(i) \(S \) is balanced;
(ii) \(S \) admits a representation as in Theorem 1 with \(w_a = 0 \) for all \(a \in A \);
(iii) \(\mathcal{S}(S) \) is a Brandt semigroup;
(iv) \(S \) is isomorphic to a Rees matrix semigroup \(\mathcal{M}_0(K; A, A; \Delta) \) over a simple inverse \(\omega \)-semigroup \(K \), \(\Delta \) is the identity matrix.

The structure of the semigroup \(K \) in Theorem 2 was determined by Kočin [1] and Munn [5], the Rees matrix semigroups over bi-simple inverse semigroups were studied in [3] (for the 0-simple case in the theorem, cf. [3, Corollary 5.7] and [6, Theorem 4.2]). Various other special cases include: 0-bisimple, combinatorial, balanced, and combinations thereof.

4. For the remaining cases, we will need the following.

Construction III. Let \(Y \) be a tree semilattice satisfying one of the two conditions: (1) \(Y \) has a zero \(\zeta \) and all elements of \(Y \) are of finite height, (2) \(Y \) has no zero and is of locally finite length. To every non-zero element \(\alpha \) of \(Y \) associate a Brandt semigroup \(S_\alpha \), suppose that the family \(\{S_\alpha\} \) is pairwise disjoint, and that a homomorphism \(\phi_\alpha : S_\alpha \to S_\beta \) is given, where \(\alpha \) is the unique element of \(Y \) covered by \(\alpha \), with the properties:

(i) \(S_\alpha \phi_\alpha \cap S_\beta \phi_\beta = 0 \) if \(\alpha = \beta \);
(ii) for every infinite ascending chain \(\alpha_1 < \alpha_2 < \cdots \) in \(Y \) and every \(a \in S_{\alpha_1}^* \), there exists \(\alpha_0 \) such that \(a \in S_{\alpha_0} \phi_{\alpha_0} \phi_{\alpha_0-1} \cdots \phi_{\alpha_1} \). Let \(\psi_{\alpha, \alpha} \) be the identity mapping on \(S_\alpha \), and for \(\alpha > \beta \), let \(\psi_{\alpha, \beta} = \phi_{\alpha} \phi_{\alpha_1} \cdots \phi_{\alpha_n} \) where \(\alpha > \alpha_1 > \cdots > \alpha_n > \beta \). Let \(S = (U_{a \in Y \setminus \{0\}} (S_a \setminus 0_a)) \cup 0 \) where \(\zeta \) is the zero of \(Y \) (if \(Y \) has one), and 0 is an element not contained in any \(S_a \), and on \(S \) define the multiplication \(* \) by

\[
a * b = (a \psi_{\alpha, \alpha}) (b \psi_{\beta, \alpha}) \text{ if } \alpha \beta \neq \zeta \text{ and } (a \psi_{\alpha, \alpha}) (b \psi_{\beta, \alpha}) \neq 0_{\alpha \beta} \text{ in } S_{\alpha \beta},
\]

and all other products are equal to 0. The set \(S \) with this multiplication will be called a Brandt tree if \(Y \) has a zero and a rooted Brandt tree otherwise.

Theorem 3. A semigroup \(S \) is prime \(\omega \)-regular and has a proper 0-minimal ideal if and only if \(S \) is an ideal extension of a 0-simple \(\omega \)-regular semigroup \(I \) by a Brandt tree \(T \) determined by a 0-restricted homomorphism of \(T \) into the top of \(I \).

Such a homomorphism is completely determined by its restriction to the socle \(\mathcal{S}(T) \) of \(T \), so all such homomorphisms are given by 0-restricted homomorphisms of \(\mathcal{S}(T) \) into \(\mathcal{S}(I) \), both of which are primitive inverse semigroups, and are easy to find explicitly.
Theorem 4. A groupoid S is a prime ω-regular semigroup without 0-minimal ideals if and only if S is a rooted Brandt tree.

5. The semigroups $\mathcal{O}(A, w; V, \sigma)$ and $\mathcal{O}[A, w; V, \sigma]$ do not seem to admit a neat isomorphism theorem except in special cases. In the balanced case, using Theorem 2, [3, 4.1], and [1, Theorem 4], we derive a satisfactory isomorphism theorem. A direct proof does the same in the case these semigroups are combinatorial. Isomorphisms of the semigroups in Construction III are similar to those in [4, Théorème 3.1], while isomorphisms of the semigroups in Theorem 3 can be expressed by isomorphisms of I and T satisfying a commutative diagram.

References

The Pennsylvania State University, University Park, Pennsylvania 16802