SETS OF INTERPOLATION FOR MULTIPLIERS

BY BENJAMIN B. WELLS, JR.

Communicated by Ray A. Kunze, June 3, 1970

Let T denote the circle and I a closed ideal of $L^1(T)$ under convolution. Let $\mathcal{F}I$ denote the set of sequences of complex numbers which are Fourier transforms of elements of I.

$$\mathcal{F}I = \{ (\xi_n) : \exists f \in I, \hat{f}(n) = \xi_n \}.$$

A subset E of the integers is called a set of interpolation for the multipliers of $\mathcal{F}I$ ($= M(\mathcal{F}I)$) if every bounded complex sequence defined on E is the restriction to E of a multiplier of $\mathcal{F}I$. E is called a Sidon set if every bounded complex sequence on E is the restriction to E of the Fourier transform of some measure on T. Answering a question of Y. Meyer we show here that every set of interpolation $E \subseteq \mathbb{Z}^+$ for $M(\mathcal{F}H^1(T))$ is a Sidon set.

Let $A(T)$ denote the Banach space of all analytic continuous functions on T equipped with the supremum norm. Let $\beta = H^1(T) \otimes C(T)$ be the Banach space of all elements of $A(T)$ which can be expressed in the form $\sum_i f_k \ast g_k$ where $f_k \in H^1(T)$, $g_k \in C(T)$ and such that $\sum_i \| f_k \| \| g_k \|_\infty < \infty$. The norm $\| \cdot \|_\beta$ in β is the infimum over all such representations. Meyer [1] has shown that the dual of β is precisely $M(\mathcal{F}H^1(T))$.

Theorem 1. β is isometrically isomorphic to $A(T)$.

Proof. It is clear that the natural embedding of β in $A(T)$ is norm decreasing. Let $P(\theta) = \sum_i a_k \exp[i n_k \theta]$ be an arbitrary analytic trigonometric polynomial and write $e^{i M \theta} P(\theta)$ as

$$\sum_{n=-N}^N \left(1 - \left| \frac{n}{N} \right| \right) \exp[i (n + N) \theta] \ast \sum_{k=1}^r b_k \exp[i (n_k + M) \theta]$$

where $b_k = a_k \left(1 - \left| n_k + M - N \right| / N \right)^{-1}$. Choose $M = N - \lfloor N^{1/2} \rfloor$ and N larger than n. It is clear that as $N \to \infty$, $b_k \to a_k$ for each k. Since the polynomial on the left-hand side is just a translate of the usual Fejer kernel, it has L^1 norm equal to 1. By the choice of M, the sup norm of the polynomial on the right-hand side tends to $\| P(\theta) \|_\infty$ as $N \to \infty$. Hence

$$\| \exp[i M \theta] P(\theta) \|_\beta < \| P(\theta) \|_\infty + \epsilon$$

AMS 1969 subject classifications. Primary 4258; Secondary 4205.

Key words and phrases. Multiplier, Sidon set, $\Lambda(2)$, set of interpolation.

Copyright © 1971, American Mathematical Society
for \(N \) sufficiently large.

It is clear that \(|P(\theta)|_\beta \leq |\exp [iM\theta]P(\theta)|_\beta\) for all positive integers \(M \). Hence \(|P(\theta)|_\beta \leq \|P(\theta)\|_\omega\). Since the analytic trigonometric polynomials are dense in \(\beta \) the theorem follows.

The following answers a question raised in [1, p. 554].

Corollary. \(E \subseteq \mathbb{Z}^+ \) is a set of interpolation for \(M(\mathcal{F}H^1(T)) \) if and only if \(E \) is a Sidon set.

Proof. The only implication of interest is the "only if" one. Thus assume \(E \) is a set of interpolation for \(M(\mathcal{F}H^1(T)) \). It is an easy consequence of the definition that \(E \) is a set of interpolation for \(M(\mathcal{F}H^1(T)) \) if and only if the elements of \(\beta \) whose spectra are contained in \(E \) have absolutely convergent Fourier series. Hence there is some constant \(c \), depending only on \(E \), such that

\[
\sum_{k=1}^r |a_k| \leq c\|P(\theta)\|_\beta
\]

for all trigonometric polynomials \(P(\theta) = \sum_{k=1}^r a_k \exp [in_k\theta] \) with spectrum contained in \(E \). Since \(\|P(\theta)\|_\omega = \|P(\theta)\|_\beta \), \(E \) is a Sidon set (cf. [3, p. 121]). Q.E.D.

It is of some interest to compare the above notions of interpolation in \(M(\mathcal{F}T) \) with the following definition implicit in [1]: \(E \) is said to be a set of \(E \)-interpolation if every bounded complex sequence on \(E \) is the restriction to \(E \) of a multiplier of \(\mathcal{F}I(E) \) where \(I(E) \) is the ideal of all \(L^1 \) functions whose spectrum is contained in \(E \). The concept of Sidon set is replaced here by that of \(\Lambda(2) \) set. Recall that \(E \) is a \(\Lambda(2) \) set if every \(L^1 \) function whose spectrum is contained in \(E \) is in \(L^2 \).

Theorem 2. \(E \) is a set of \(E \)-interpolation if and only if it is a \(\Lambda(2) \) set.

Proof. The fact that \(\Lambda(2) \) sets are sets of \(E \)-interpolation is an immediate consequence of the Riesz-Fisher theorem.

Conversely if \(E \) is a set of \(E \)-interpolation and \(P(\theta) = \sum a_k \exp [in_k\theta] \) is an \(E \)-polynomial define \(g(t, \theta) = \sum a_k \varphi_k(t) \exp [in_k\theta] \) where \(\varphi_k \) is the \(k \)th Rademacher function. Then \(g_t = s_t \ast f \) where \(s_t \) is the convolution operator from \(I(E) \) to \(L^1(T) \) such that \(s_t(\pi_k) = \varphi_k(t) \).

Let \(l_\omega, E \) denote the quotient space of \(l_\omega \) by the closed subspace of those sequences vanishing on \(E \). Then since \(E \) is a set of \(E \)-interpolation, the natural map \(\sigma : M(\mathcal{F}I(E)) \to l_\omega, E \) is onto, and hence has a bounded inverse. Thus \(\|s_t\| \leq c \) where \(c \) is independent of \(t \), and \(\|g_t\|_1 \leq c\|f\|_1 \). The proof now proceeds as in Theorem 3.1 of [2].

Integrate \((\sum |a_k|^2)^{1/2} \leq 2\int_0^\pi |g(t, \theta)| \) with respect to \(\theta \) over \([−\pi, \pi]\) and use the above inequality.
REMARK. In direct analogy to the space β, $\beta_{\beta} = I(E) \otimes C(T)$ may be formed. It may be of interest to ask for what sets E it is true that whenever $F \subset E$, F is a set of $M(\mathfrak{H}(E))$ interpolation if and only if it is Sidon. By Theorem 2 this will fail if $E = F$ and E is taken to be a set which is $\Lambda(2)$ but not Sidon.

REFERENCES

UNIVERSITY OF OREGON, EUGENE, OREGON 97403

UNIVERSIDAD TECNICA DEL ESTADO, SANTIAGO, CHILE