BOUNDARY BEHAVIOR OF HARMONIC FUNCTIONS ON HERMITIAN HYPERBOLIC SPACE

BY ROBERT PUTZ

Communicated by J. J. Kohn, May 11, 1970

Let \(D = \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n : h(z) = \text{Im} z_1 - \sum_2^n |z_k|^2 > 0 \} \), and \(B = \partial D = \{ z : h(z) = 0 \} \). Writing \(z_j = x_j + iy_j \) we let \(\beta \) be the measure on \(B \) given by \(d\beta = dx_1 dx_2 dy_2 \cdots dx_n dy_n \). \(D \) is a Siegel domain of Type II which is the image of the unit ball \(D = \{ z \in \mathbb{C}^n : \sum_1^n |z_k|^2 < 1 \} \) under the generalized Cayley transform:

\[
\begin{align*}
 z_1 &\mapsto i \frac{1 + z_1}{1 - z_1}, \\
 z_k &\mapsto i \frac{z_k}{1 - z_1}, \quad k = 2, \ldots, n.
\end{align*}
\]

Let \(N \) be the group of holomorphic automorphisms of \(D \) consisting of the elements \((a, c) \in \mathbb{R} \times \mathbb{C}^{n-1} \) acting on \(D \) in the following way:

\[
(a, c) : z_k \mapsto z_k + a_1 \sum_{k=2}^n z_k \bar{c}_k + i \sum_{k=2}^n 2z_k \bar{c}_k,
\]

\[
(a, c) : z_k \mapsto z_k + c_k, \quad k \geq 2.
\]

\(N \) acts simply transitively on \(B \). We will consider real-valued functions on \(D \) which are harmonic with respect to the Laplace-Beltrami operator:

\[
L = h(z) \left\{ 4y_1 \frac{\partial^2}{\partial y_1 \partial \bar{y}_1} + \sum_2^n \frac{\partial^2}{\partial z_k \partial \bar{z}_k} + 2i \sum_2^n \frac{\partial^2}{\partial z_1 \partial \bar{z}_k} - 2i \sum_2^n \frac{\partial^2}{\partial \bar{z}_1 \partial \bar{z}_k} \right\}.
\]

In [2] Körányi defined the following notion of admissible convergence in \(D \): let us call

\[
\Gamma_a(u) = \left\{ z \in D : \text{Max} \left[| \text{Re} z_1 - \text{Re} u_1 |, \sum_2^n | z_k - u_k |^2 \right] < a h(z), \quad h(z) < 1 \right\}
\]

AMS 1969 subject classifications. Primary 3111, 3210; Secondary 2270.

Key words and phrases. Hermitian hyperbolic space, Laplace-Beltrami operator, admissible convergence, harmonic functions, area integral.

\(^1\) This contains a summary of results in the author's Ph.D. dissertation at Washington University written under the direction of Professor R. R. Coifman. I take pleasure in thanking Professor Coifman for his valuable assistance, and Professor Guido Weiss for his advice and encouragement.
a truncated admissible domain of aperture α at $u \in B$. We say that f on D converges admissibly at u to l if $\lim_{z \to u; z \in \Gamma_{a}(u)} f(z) = l$, for some $\alpha > 0$.

The principal result of this note is the Theorem below, which is the analogue of results of Marcinkiewicz and Zygmund [3], Spencer [4], Calderón [1], and Stein [5]. (This is often referred to as the Area theorem for harmonic functions.) Let

$$\nabla f = \left(2h^{1/2} \frac{\partial f}{\partial z_1}, 2iz_2 \frac{\partial f}{\partial z_1}, \cdots, 2iz_n \frac{\partial f}{\partial z_1} + \frac{\partial f}{\partial z_n}\right)$$

and

$$|\nabla f|^2 = 4h \left| \frac{\partial f}{\partial z_1} \right|^2 + \sum_{k=2}^{n} \left| 2iz_k \frac{\partial f}{\partial z_1} + \frac{\partial f}{\partial z_k} \right|^2.$$

Let E be a measurable set in B and suppose that f is a real-valued harmonic function in D.

Theorem. (a) If f is admissibly bounded for each point of E then

$$\int_{\Gamma_{a}(u)} h(z)^{-a} |\nabla f|^2 d\mu(z) < \infty$$

for almost every u in E and $\alpha > 0$, where $d\mu$ is Lebesgue measure.

(b) If, for each point u of E, we can find an α such that the integral (1) is finite, then f converges admissibly at almost every point of E.

The general outline of the proof follows Stein [5]. The differences arise from the fact that the Laplace-Beltrami operator is not uniformly elliptic. We first indicate how part (a) is proved. By a standard argument (see Calderón [1]) we may assume that E is compact, and f is uniformly bounded in $\Gamma_{a}(u)$, for α fixed, and all $u \in E$.

Lemma 1. If f is bounded and harmonic in $\Gamma_{a}(0)$, then $h(z) |\partial f/\partial z_1|$ and $h(z)^{1/2} |\partial f/\partial z_k|$, $k \geq 2$, are bounded in $\Gamma_{a'}(0)$ for $\alpha' < \alpha$.

This result can be proved by using the Poisson integral representation for functions defined on images of spheres under the Cayley transform.

Let $\omega_{a}(E) = \bigcup_{\omega \in \mathcal{B}} \Gamma_{a}(u)$. We construct regions approximating $\omega_{a}(E)$. Write $z \in D$ as $z = [x, \bar{z}]$, where $x = x_1, \bar{z} = (z_2, \cdots, z_n)$, $t = h(z)$. Since E is compact, $E_{t} = \{ [x, \bar{z}] : [x, \bar{z}]_{0} \in E \}$ is compact. For $0 < t < 1$ let $\Gamma_{a}(u)_{t} = \{ [x, \bar{z}]_{r+t^{2}} : [x, \bar{z}]_{0} \in \Gamma_{a}(u) \}$ and $r + t^{2} < 1$. Then $\{ \Gamma_{a}(u)_{t} \cap E_{t} \}_{u \in \mathcal{B}}$ forms an open cover of E_{t}. Choose a finite subcover for $t = t_{0} < 1$ and then for each $t < t_{0}$ choose one in the following manner: if $u_1, \cdots, u_{k(t)}$ are the base points chosen for the cover of
and if \(t' < t'' < t_0 \), then \(\{ u_1, \ldots, u_{k(t')} \} \supset \{ u_1, \ldots, u_{k(t''')} \} \). Let
\[\omega_i = \bigcup_{j=1}^{k(t)} \Gamma_\alpha(u_j). \]

Lemma 2. \(\int_{\omega_a(z)} |\nabla f| \, d\mu(z) < \infty. \)

We prove this by first applying Green's theorem to \(\omega_t \). Then, using the estimates of Lemma 1 translated by the group \(N \) and the uniform boundedness of \(f \), we obtain \(\int_{\omega_t} |\nabla f| \, d\mu(z) \leq k \int_{\omega_a} ds \) when \(k \) is independent of \(t \). Now we let \(t \) tend to 0, and observe that \(\int_{\omega_a} ds \leq M \) independently of \(t \). Part (a) then follows from:

Lemma 3. Suppose \(E \subset B \) is compact and \(f \) is locally bounded and positive in \(D \). If \(\int_{\omega_a} f \, d\mu < \infty \), then \(\int_{\Gamma_a(z)} h(z)^{-\alpha} f(z) \, d\mu(z) < \infty \) for all \(\beta > 0 \) and almost every \(u \in E \).

We now outline the proof of part (b).

Lemma 4. If \(\int_{\Gamma_a(0)} h(z)^{-\alpha} |\nabla f| \, d\mu(z) < \infty \), then \(h(z) |\partial f/\partial z_1| \) and \(h(z)^{1/2} |\partial f/\partial z_k| \), \(k \geq 2 \), are bounded in \(\Gamma_\alpha'(0) \) for \(\alpha' < \alpha \).

To prove this let
\[
D_1 = \frac{\partial}{\partial z_1} + \frac{\partial}{\partial \bar{z}_1},
\]
\[
D_k = 2iz_k \frac{\partial}{\partial z_1} + \frac{\partial}{\partial \bar{z}_k},
\]
\[
D_{k'} = -2iz_k \frac{\partial}{\partial z_1} + \frac{\partial}{\partial \bar{z}_k},
\]
\[
D_0 = z_1 \frac{\partial}{\partial z_1} + \bar{z}_1 \frac{\partial}{\partial \bar{z}_1} + \frac{1}{2} \sum_{j=2}^{n} \left(z_k \frac{\partial}{\partial z_k} + \bar{z}_k \frac{\partial}{\partial \bar{z}_k} \right).
\]

We then observe that if \(f \) is harmonic then \(D_0f, D_1f, D_2f, D_kf \) are harmonic, and thus can be represented as Poisson integrals. Now \(|\nabla f|^2 \) dominates \(h |D_1f|^2, |D_2f|^2, |D_kf|^2 \) and \(h^{-1} |D_0|^2 \) in \(\Gamma_\alpha(0) \); and the latter dominate \(h |\partial f/\partial z_1|^2 \) and \(|\partial f/\partial z_k|^2 \) for \(k \geq 2 \), in \(\Gamma_\alpha(0) \). Now, using Green's theorem and Lemma 4, we have
\[
\int_{\partial \omega_1} f^2 \, ds \leq k \int_{\partial \omega_1} |f| \, ds + k' \int_{\partial \omega_1} |\nabla f|^2 \, d\mu.
\]

Lemma 5. Suppose \(E \subset B \) is compact, \(f \) is nonnegative and locally bounded in \(D \), and for each \(u \in E \), there exists an \(\alpha > 0 \) such that \(\int_{\Gamma_a(u)} f \, d\mu < \infty \). Then for every \(\epsilon > 0 \) and \(\beta > 0 \) there exists a compact set \(F \subset E \) such that \(\operatorname{meas}(E \setminus F) < \epsilon \), and \(\int_{\omega_{a}(0)} h(z)^{-\alpha} f(z) \, d\mu(z) < \infty \).
Applying this to the inequality above we have \(\int_{\partial \Omega} |f|^2 \, ds \leq M \) independently of \(t \). Now a standard argument (see Stein [5]) shows that
\[|f(z)| \leq cg(z) + c' \]
in \(\omega_\alpha(E) \) where \(g \) is the Poisson integral of some function in \(L^2(B) \). The result now follows from Korányi [2].

References