1. Introduction. In [1], S. P. Wang uses the techniques of [2] to prove a converse to a Selberg lemma for solvable groups. In [3], the author gave an elementary proof of the main result of [2] using the semisimple splitting. It is quite natural to expect that the results of [1] should also have an elementary proof in terms of the semisimple splitting. We do so in this paper.

2. Preliminaries. Let \(S \) be a simply connected solvable analytic group with nil-radical \(H \). Suppose we imbed \(S \) as a subgroup of \(\text{GL}(n, \mathbb{R}) \), the group of all \(n \times n \) nonsingular real matrices. Let \(\overline{\alpha}(S) \) denote the algebraic hull of \(S \). Then we can write \(\overline{\alpha}(S) = N \cdot T \), where \(N \) is the group of all unipotent matrices in \(\overline{\alpha}(S) \) and \(T \) is a maximal abelian subgroup of semisimple matrices in \(\overline{\alpha}(S) \). The relevant facts about algebraic groups can be found in [6]. In [3] we stated the following result primarily due to L. Auslander [4].

There exists an imbedding of \(S \) as a subgroup of \(\text{GL}(n, \mathbb{R}) \) satisfying the following properties.

1. \(H \subset N \).
2. The projection mapping \(P: \overline{\alpha}(S) \to N \) restricted to \(S \) defines a diffeomorphism of \(S \) onto \(N \). We denoted the restriction of \(P \) to \(S \) by \(n:S \to N \).

Denote the projection mapping of \(\overline{\alpha}(S) \) into \(T \) by \(t \). Let \(C \) be a closed subgroup of \(S \). As we have seen in [3] we can choose \(T \) so that \(t(C) \subset \overline{\alpha}(C) \). Let \(C' = \overline{\alpha}(C \cap H)C \). Then \(C'/C \) is compact and \(C' \) is closed in \(S \). From our choice of \(T \) and since \([\overline{\alpha}(C), \overline{\alpha}(C)] \subset \overline{\alpha}(C \cap H) \) it follows that \(n(C') \) is a closed subgroup of \(N \). It is easy to see that the following statements are equivalent.

1. \(S/C \) is compact.
2. \(S/C' \) is compact.
3. \(N/n(C') \) is compact.
4. \(N = \overline{\alpha}(n(C')) \).

Key words and phrases. Solvable, nilpotent, Lie group, topological group, algebraic hull, matrix groups, unipotent, semisimple splitting.

Copyright © 1971, American Mathematical Society
3. **Wang's Theorem A.** We shall assume the following two simple lemmas from [1].

Lemma 3.1. Let V be a finite-dimensional vector space over the reals, W a proper subspace of V and G a connected solvable subgroup of $GL(V)$. Then there is a neighborhood Ω of the identity in G such that $\bigcup_{g \in \Omega} g(W) \neq V$.

Lemma 3.2. Let X be a nonempty conic open subset of V and Ω a compact neighborhood of 0 in V. Then for every x in X, there is a positive number r such that $sx + \Omega \subset X$ for all $s \geq r$.

Let C be a closed subgroup of the simply connected solvable analytic group S. We shall assume the notation and conventions of §2.

We say that C has the Selberg property in S if and only if for any s in S and for any neighborhood Ω of 1 in S there exists u and v in Ω and an integer $l > 0$ such that $us^l v$ is in C.

Theorem A. Suppose that C has the Selberg property in S. Then S/C is compact.

Proof. By 1.2 of [5], C' has the Selberg property. Since S/C is compact if and only if S/C' is compact we can replace C by C' in our discussion. Thus without loss of generality we will assume throughout that the subgroup C under consideration has the addition property that $\alpha(C \cap H) \subset C$. It follows that $n(C)$ is a subgroup of N. We must prove that $N = \alpha(n(C))$.

Assume that N is abelian. Suppose that $N \neq \alpha(n(C))$. Let Ω_1 be the set of all x in N such the euclidean absolute value of x is less than one. Let Ω_2 be the set of all x in N whose euclidean absolute value is less than one half. Since S normalizes N, by Lemma 1 it is easy to see that there is a compact symmetric neighborhood Ω of 1 in S such that

(a) $\bigcup_{u \in \Omega} u \alpha(n(C)) u^{-1} \neq N$.

It follows from elementary topological group theory techniques (see p. 95 of [7]) that Ω can be chosen with the addition properties that

(b) For all u in Ω, $u \Omega_2 u^{-1} \subset \Omega_1$.

(c) $\Omega^2 \subset n^{-1}(\Omega_2)$ where n is the homeomorphism of S onto N introduced in §2.

By [5], HC/H has the Selberg property in the vector group S/H. Thus by [5] again we have that S/HC is compact. It follows from our previous discussion that $N = H + \alpha(n(C))$.

Let $X = N - \bigcup_{u \in \Omega} u \alpha(n(C))u^{-1}$. Then X is a nonempty open conic. It follows that there is an h in H such that $h^l + \Omega \subset X$, for all positive integers l. Since C has the Selberg property in S there are elements u and v in Ω and a positive integer l such that uh^lv is in C. Thus $uh^l n(uv)$ is in $n(C)$. Note that by $n(uv)$ we mean the application of the projection map n to the product uv. From this equation we get that $h^l n(uv)u$ is in $u^{-1}n(C)u \subset \Omega$. Thus $h^l + \Omega \subset X$, a contradiction.

Suppose N is not abelian. Let $[x, y]$ denote the commutator $xyx^{-1}y^{-1}$ of x and y. Denote the last nontrivial term in the lower central series of N by M. Using induction on the number of terms of the lower central series of N we can assume that the theorem holds in the group S/M. By [5], MC/M has the Selberg property in S/M. Thus $N = M + \alpha(n(C))$.

Let z and z' be in N. We can write $z = xy$ and $z' = x'y'$ where x and x' are in M and y and y' are in $\alpha(n(C))$. Since M is central in N, $[z, z'] = [y, y']$ is in $\alpha(n(C))$. Thus $MC[N, N] \subset \alpha(n(C))$.

4. **Wang's Theorem B.** We shall be satisfied with proving Wang's Theorem B for the special case of S simply connected.

Theorem B. Let S be a simply connected solvable analytic group, C a discrete subgroup of S such that S/C is compact, and Z the centralizer of C in S. Then Z is abelian.

Proof. Since Z commutes with C it commutes with $\alpha(C)$. Thus Z acts by the identity map on N. This easily implies that Z must be contained in N. Thus Z is abelian.

References

Yale University, New Haven, Connecticut 06520