Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

$B_{\left( {{\text{TOP}}_n } \right)^ \sim}$ and the surgery obstruction


Author: Frank Quinn
Journal: Bull. Amer. Math. Soc. 77 (1971), 596-600
MSC (1970): Primary 57D65, 55F60, 57C50; Secondary 55C05, 57B10, 55B20, 20F25
DOI: https://doi.org/10.1090/S0002-9904-1971-12766-0
MathSciNet review: 0276980
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. William Browder, Free 𝑍_{𝑝}-actions on homotopy spheres, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 217–226. MR 0276982
  • 2. Sylvain Cappell, A splitting theorem for manifolds and surgery groups, Bull. Amer. Math. Soc. 77 (1971), 281–286. MR 0285010, https://doi.org/10.1090/S0002-9904-1971-12720-9
  • 3. T. Petrie, Surgery groups over finite fields (to appear).
  • 4. Frank Quinn, A geometric formulation of surgery, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 500–511. MR 0282375
  • 5. Frank Quinn, A geometric formulation of surgery, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 500–511. MR 0282375
  • 6. F. Quinn, Geometric surgery (to appear).
  • 7. D. Sullivan, Triangulating and smoothing homotopy equivalences, Lecture Notes, Princeton University, Princeton, N. J., 1967.
  • 8. Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR 0494074
    D. Sullivan, \cyr Geometricheskaya topologiya., Izdat. “Mir”, Moscow, 1975 (Russian). \cyr Lokalizatsiya, periodichnost′ i simmetriya Galua. [Localization, periodicity and Galois symmetry]; \cyr Biblioteka Sbornika “Matematika”. [Library of the Journal “Matematika”]; Translated from the English and edited by D. B. Fuks. MR 0494075
  • 9. Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 0224099, https://doi.org/10.2307/1970594
  • 10. Friedhelm Waldhausen, Whitehead groups of generalized free products, Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 155–179. Lecture Notes in Math., Vol. 342. MR 0370576

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 57D65, 55F60, 57C50, 55C05, 57B10, 55B20, 20F25

Retrieve articles in all journals with MSC (1970): 57D65, 55F60, 57C50, 55C05, 57B10, 55B20, 20F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1971-12766-0