ON THE CONVERGENCE OF MULTIPLE FOURIER SERIES

BY CHARLES FEFFERMAN

Communicated by M. H. Protter, January 11, 1971

We continue from [2].

THEOREM. Let P be an open polygonal region in \mathbb{R}^2, containing the origin. Set $\lambda P = \{(\lambda x, \lambda y) | (x, y) \in P\}$ for $\lambda > 0$. Then for

$$f \sim \sum_{m,n=-\infty}^{\infty} a_{mn} \exp[i(mx + ny)]$$

in $L^2([0, 2\pi] \times [0, 2\pi])$, we have

$$f(x, y) = \lim_{\lambda \to \infty} \sum_{(m,n) \in \lambda P} a_{mn} \exp[i(mx + ny)]$$

almost everywhere.

Surprisingly, this is an easy consequence of Carleson’s theorem [1] on convergence of Fourier series of one variable.

PROOF. It is enough to prove the maximal inequality

(1) $$\left\| \sup_{\lambda} \sum_{(m,n) \in \lambda P} a_{mn} \exp[i(mx + ny)] \right\|_2 \leq C \|f\|_2.$$

Inequality (1) follows from the special case in which P is a triangle with a vertex at the origin; for any polygon breaks up into triangles, and the characteristic function of any triangle is a linear combination of characteristic functions of triangles with vertices at zero. Consequently, we can assume P has the form $P = \{(x, y) \in S | (x, y) \cdot t < a\}$, where S is a sector of angle $< \pi$ emanating from the origin, $t \in \mathbb{R}^2$, and $a \in \mathbb{R}^1$. Thus (1) is equivalent to

(2) $$\left\| \sup_{\theta \in \mathbb{R}^2} \sum_{(m,n) \in S; (m,n) \cdot t < \theta} a_{mn} \exp[i(mx + ny)] \right\|_2 \leq C \|f\|_2.$$

Evidently, it suffices to prove (2) for rational t (with C independent of t), and to do so it is clearly enough to deal with the case $t = (p, q)$ where p and q are relatively prime integers. Finding integers r and s for which $pr - qs = 1$, we let the matrix $A = \left(\begin{smallmatrix} p & q \\ q & -p \end{smallmatrix} \right) \in SL(2, \mathbb{Z})$ act as an automorphism of the 2-torus. Under the action of A, (2) becomes

AMS 1969 Subject classifications. Primary 4211, 4240.
Here,

\[\sup_{b} \left| \sum_{(m',n') \in B':m' < b} a_{m'\cdot n'} \exp\left[i(m'x' + n'y')\right] \right|_2 \leq C \|f'\|_2. \]

is the Fourier series of \(f' \). Note that \(C \) is unchanged from (2) to (3). However, (3) follows at once by applying the Carleson-Hunt theorem of [3] to the function \(g(\cdot, y') \) for each \(y' \), where \(g'(x', y') \sim \sum_{(m',n') \in B'} a_{m'\cdot n'} \exp[i(m'x' + n'y')] \). Q.E.D.

REMARKS. 1. The same proof applies to all \(L^p \), \(p > 1 \), and also (with some padding) to polyhedra in \(n \) variables.

2. For \(P \) a rectangle, a more precise argument, discovered independently by P. Sjölin [4], proves convergence of double Fourier series under minimal growth conditions on \(f \). The best known hypotheses are \(f \in L^2(\log L)^2 \log \log L \) for \(P \) a rectangle, and \(f \in L^2(\log L)^3 \log \log L \) in general. The relationship of our proof to Sjölin’s is not clear.

3. N. Tevzadze [5] has shown that for \(f \in L^2([0, 2\pi] \times [0, 2\pi]) \) and for any monotone sequence of rectangles \(R_1 \subseteq R_2 \subseteq R_3 \subseteq \cdots \) in \(R^3 \) with sides parallel to the coordinate axes,

\[f(x, y) = \lim_{i \to \infty} \sum_{(m,n) \in R_i} a_{mn} \exp[i(mx + ny)] \]

almost everywhere.

Compare with the counterexamples of [2].

REFERENCES

UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637