WEIGHTED APPROXIMATION OF CONTINUOUS FUNCTIONS

BY JOÃO B. PROLLA

Communicated by Felix Browder, June 17, 1971

1. Notation. Let X be a completely regular Hausdorff space and E a (real or complex) locally convex Hausdorff space. $F(X, E)$ is the vector space of all mappings from X into E, and $C(X, E)$ is the vector subspace of all such mappings that are continuous. $B_\infty(X, E)$ is the vector subspace of $F(X, E)$ consisting of those bounded f that vanish at infinity. The vector subspace $C(X, E) \cap B_\infty(X, E)$ is denoted by $C_\infty(X, E)$. If X is locally compact, $\mathfrak{X}(X, E)$ will denote the subspace of $C(X, E)$ consisting of those functions that have compact support. The corresponding spaces for $E = \mathbb{R}$ or \mathbb{C} are written omitting E.

A weight v on X is a nonnegative upper semicontinuous function on X. A directed family of weights on X is a set of weights on X such that given $u, v \in V$ and $\lambda \geq 0$ there is a $w \in W$ such that $\lambda u, \lambda v \leq w$. If U and V are two directed families of weights on X and for every $u \in U$ there is a $v \in V$ such that $u \leq v$, we write $U \leq V$. If V is a directed family of weights on X, the vector space of all $f \in F(X, E)$ such that $vf \in B_\infty(X, E)$, for any $v \in V$, is denoted by $FV_\infty(X, E)$ and is called a weighted function space. On $FV_\infty(X, E)$ we shall consider the topology determined by all the seminorms $\|f\| = \sup \{v(x) p(f(x)) ; x \in X\}$ where $v \in V$ and p is a continuous seminorm on E. $CV_\infty(X, E)$ will denote the subspace $FV_\infty(X, E) \cap C(X, E)$, equipped with the induced topology. The weighted function spaces $CV_\infty(X, E)$ will be called Nachbin spaces.

2. Completeness properties of Nachbin spaces [6]. If for every $x \in X$ there is a weight $u \in U$ such that $u(x) > 0$, we write $U > 0$.

Lemma. If E is complete and $U > 0$, then $FV_\infty(X, E)$ is complete.

Theorem 1. Suppose that E is complete, and U and V are two directed families of weights on X with $U \leq V$. If $V > 0$ on X and $CU_\infty(X, E)$ is closed in $FV_\infty(X, E)$, the Nachbin space $CV_\infty(X, E)$ is complete.
In case \(E \) is \(R \) or \(C \), the above theorem was obtained by Summers, under the hypothesis that \(U>0 \) on \(X \). (See Theorem 3.6 of [10].)

Theorem 2. Suppose that \(E \) is complete and \(U \) and \(V \) are two directed families of weights on \(X \) with \(U \leq V \). If \(V>0 \) on \(X \) and \(CU_{\omega}(X, E) \) is quasi-complete, the Nachbin space \(CV_{\omega}(X, E) \) is quasi-complete.

3. **Dual spaces** [6]. Throughout this paragraph \(X \) will be a locally compact Hausdorff space. In this case, for any set of weights \(V \) on \(X \), the space \(\mathcal{K}(X, E) \) is densely contained in \(CV_{\omega}(X, E) \). In fact, even \(\mathcal{K}(X) \otimes E \) is densely contained in \(CV_{\omega}(X, E) \). Let \(E'_{\omega} \) denote the topological dual of \(E \) endowed with the topology \(\sigma(E', E) \). An \(E'_{\omega} \)-valued bounded Radon measure \(u \) on \(X \) is a continuous linear mapping \(u \) from \(\mathcal{K}(X) \) into \(E'_{\omega} \) when \(\mathcal{K}(X) \) is endowed with the topology of uniform convergence on \(X \). Following Grothendieck [4], an \(E'_{\omega} \)-valued bounded Radon measure \(u \) on \(X \) is called integral if the linear form \(L \) defined over \(\mathcal{K}(X) \otimes E \) by \(L(\sum \phi_i \otimes y_i) = \sum \langle y_i, u(\phi_i) \rangle \) is continuous in the topology induced by \(C_{\omega}(X, E) \), in which case it can be uniquely continuously extended to \(C_{\omega}(X, E) \)'; if we define \(u(\phi) \) for each \(\phi \in \mathcal{K}(X) \) by \(\langle y, u(\phi) \rangle = L(y \otimes \phi) \) for all \(y \in E \), then \(u \) is an \(E'_{\omega} \)-valued bounded Radon measure. The transpose \(u' \) of \(u \) is a linear map from \(E \) into \(M_b(X) \), the space of all bounded Radon measures on \(X \). For every \(y \in E \) there corresponds a unique regular Borel measure \(\mu_y \) such that \(\mu_y(B) = \langle u'(y), \chi_B \rangle \), for all Borel subsets \(B \) of \(X \). There exists a continuous seminorm \(p \) on \(E \) and a constant \(k>0 \) such that \(|L(f)| \leq k\|f\|_p \) for all \(f \in C_{\omega}(X, E) \). Hence \(|\langle y, u(\phi) \rangle| = |L(y \otimes \phi)| \leq kp(y) \|\phi\|_{\omega} \). Thus, the bounded Radon measure \(u'(y) \) has norm \(\|u'(y)\| \leq kp(y) \), and the corresponding Borel measure \(\mu_y \) is such that \(|\mu_y(B)| \leq \|\mu_y\| \leq kp(y) \). This shows that, for a fixed Borel subset \(B \subset X \), the map \(y \mapsto \mu_y(B) \) belongs to \(E' \). Call this map \(\mu(B) \). The set function \(B \mapsto \mu(B) \), defined on the \(\sigma \)-ring of all Borel subsets of \(X \) and with values on \(E' \), is countably additive. For any finite families \(\{B_i\}_{i \in I} \) of disjoint Borel subsets of \(X \), whose union is \(X \), and \(\{y_i\}_{i \in I} \) of elements of \(E \) with \(p(y_i) \leq 1 \) for each \(i \in I \), we have

\[
(*) \quad \left| \sum_{i \in I} \langle y_i, \mu(B_i) \rangle \right| \leq k.
\]

An \(E'_{\omega} \)-valued bounded Radon measure \(u \) on \(X \) such that the corresponding set function \(\mu \) satisfies (*) for some continuous seminorm \(p \) on \(E \) and some constant \(k>0 \) is said to have finite \(p \)-semivariation. On the other hand, following Dieudonné [2], an \(E'_{\omega} \)-valued bounded bounded
Radon measure on X is said to be \textit{p-dominated} if there is a positive bounded Radon measure μ on X such that $|\langle y, u(\phi) \rangle| \leq \mu(\phi)p(y)$ for all $y \in E$ and $\phi \in \mathcal{K}(X)$. The arguments contained in Singer [9] and Câc [1] can be extended to prove the following:

Lemma. Let u be an E'_w-valued bounded Radon measure on X. The following are equivalent:

(a) u is integral;

(b) u is p-dominated, for some continuous seminorm p on E;

(c) u has finite p-semivariation, for some continuous seminorm p on E.

We denote by $M_b(X, E')$ the vector space of all E'_w-valued bounded Radon measures on X which satisfy (a) or (b) or (c).

Theorem 3. Let $CV_\omega(X, E)$ be a Nachbin space. Then $VM_b(X, E')$ is linearly isomorphic to $CV_\omega(X, E')$.

4. Bishop's generalized Stone-Weierstrass theorem [7]. If A is a subalgebra of $C(X)$, a subset $K \subset X$ is said to be \textit{antisymmetric} for A if, for $f \in A$, the restriction $f|_K$ being real-valued implies that $f|_K$ is constant. Every antisymmetric set for A is contained in a maximal one, and the collection \mathfrak{K}_A of maximal antisymmetric sets for A forms a closed, pairwise disjoint covering of X (Glicksberg [3]). The following form of Bishop's generalized Stone-Weierstrass theorem is valid for Nachbin spaces (X is as in §3).

Theorem 4. Let $V \subset C^+(X)$ and let A be a subalgebra of $C(X)$ such that every $g \in A$ is bounded on the support of every $v \in V$. Let W be a vector subspace of $CV_\omega(X, E)$ which is an A-module. Then $f \in CV_\omega(X, E)$ is in the closure of W if and only if $f|_K$ is in the closure of $W|_K$ in $CV_\omega(K, E)$ for each $K \in \mathfrak{K}_A$.

If E is \mathbf{R} or \mathbf{C} the hypothesis $V \subset C^+(X)$ can be strengthened to $V \subseteq C^+(X)$. If A is selfadjoint, the conclusion of Theorem 4 is that W is localizable under A in $CV_\omega(X)$ (see Definition 4, Nachbin [5]). Let $CV_\omega(X, E)$ be an A-module, where A satisfies the hypothesis of Theorem 4 and its maximal antisymmetric sets are sets reduced to a point, (e.g., $C_b(X)$, the algebra of all bounded continuous complex-valued functions). Under this hypothesis the following spectral synthesis result holds.

Theorem 5. Every proper closed A-submodule $W \subset CV_\omega(X, E)$ is contained in some closed A-submodule of codimension one in $CV_\omega(X, E)$ and is the intersection of all proper closed A-submodules of codimension one in $CV_\omega(X, E)$ which contain it.
5. **Dieudonné theorem for density in tensor products of Nachbin spaces** [8]. Let X and Y be two completely regular Hausdorff spaces and V and W two directed families of weights on X and Y respectively. Let $V \times W$ denote the set of all functions $(x, y) \mapsto v(x)w(y)$ on $X \times Y$. Let A be a locally convex topological algebra and let E and F be two locally convex spaces which are topological modules over A. Then $E \otimes_A F$ is defined to be the quotient space $(E \otimes F)/D$, where $E \otimes F$ has the projective tensor product topology and D is the closed linear span of the elements of the form $au \otimes v - u \otimes av$, where $a \in A$, $u \in E$, $v \in F$. If $f \in CV_\omega(X, E)$ and $g \in CW_\omega(Y, F)$, then $f \otimes_A g$ belongs to $C(V \times W)_\omega(X \times Y, E \otimes_A F)$, where $f \otimes_A g$ denotes the map $(x, y) \mapsto f(x) \otimes_A g(y)$.

Theorem 6. The vector subspace of all finite sums of mappings of the form $f \otimes_A g$, where $f \in CV_\omega(X, E)$ and $g \in CW_\omega(Y, F)$, is dense in $C(V \times W)_\omega(X \times Y, E \otimes_A F)$.

References

University of Rochester, Rochester, New York 14627