PL CHARACTERISTIC CLASSES AND COBORDISM

BY G. BRUMFIEL, I. MADSEN, R. J. MILGRAM

Communicated by P. E. Thomas, June 16, 1971

1. Introduction. In this note, we announce results on the structure of the unoriented PL cobordism ring, \mathcal{M}_*, and the \mathbb{Z}_2-characteristic classes for PL bundles, $H^*(BPL)$. All homology and cohomology is with \mathbb{Z}_2-coefficients, unless otherwise indicated.

There is a sequence of H-space fibrations

$$\Omega(G/PL) \to PL \to G \to G/PL \to BPL \to BG.$$

The \mathbb{Z}_2-cohomology of an H-space is a Hopf algebra over the Steenrod algebra. R. J. Milgram [5] has determined $H^*(G)$ and $H^*(BG)$, and D. Sullivan [7] has determined $H^*(G/PL)$ and $H^*(\Omega(G/PL))$. Our main results, determining the Hopf algebra structure of $H^*(PL)$ and $H^*(BPL)$, follow from spectral sequence arguments, once we have determined the map $H^*(G/PL) \to H^*(G)$.

W. Browder, A. Liulevicius, and F. P. Peterson [1] have shown that there is an isomorphism of rings $\mathcal{M}_*^{PL} \cong \mathcal{M}_*^{TOP} \otimes H^*(BPL)//H^*(BO)$, where \mathcal{M}_*^{PL} is the unoriented, differentiable cobordism ring determined by Thom. Thus our homology computations are sufficient to determine \mathcal{M}_*^{PL}.

Our methods also determine $H^*(TOP)$ and $H^*(BTOP)$ as Hopf algebras. In fact, these computations are easier than the PL computations. The Kirby-Siebenmann topological transversality theorem implies that $\mathcal{M}_*^{TOP} \cong \pi_*(MTOP) = \mathcal{M}_*^{TOP} \otimes H^*(BTOP)//H^*(BO)$ in dimensions $\neq 4$.

The homotopy groups are given by $\pi_n(G/PL) = \pi_n(G/TOP) = P_n$, where $P_n = \mathbb{Z}$, 0, \mathbb{Z}_2, 0 as $n \equiv 0, 1, 2, 3 \pmod{4}$, respectively. However, the natural map $G/PL \to G/TOP$ has as fibre an Eilenberg-Mac Lane space $K(\mathbb{Z}_2, 3)$.

There is a map $G/TOP \to \prod_{n \geq 1} K(P_n, n) = K(P_*)$ which induces an isomorphism of Hopf algebras over the Steenrod algebra $H^*(K(P_*)) \cong H^*(G/TOP)$. Let $k_2 \in H^{2n}(G/TOP)$ denote the image of the fundamen-
mental class $i_{2n} \in H^*(K(P_4))$. Then the map $i^*: H^*(G/TOP) \to H^*(G)$ is completely determined, once the elements $i^*(k_{2n}) \in H^{2n}(G)$ have been computed, $n \geq 1$.

Remark 2.1. Denote also by k_{2n} the image of k_{2n} in $H^{2n}(G/PL)$. Since G/PL has one nonzero k-invariant, $\delta k_2 \in H^2(K(Z_2, 2), Z)$, where δ is the integral Bockstein, it follows that $k_4 = k_2^2 \in H^4(G/PL)$. However, since δk_2 is divisible by 2, $H^*(G/PL)$ and $H^*(G/TOP)$ are abstractly isomorphic as algebras over the Steenrod algebra. Thus $H^*(G/PL)$ has generators $\{k_{2n}, n \neq 2, k_4\}$ where $k_4 \in H^4(G/PL)$ is a new generator. The Hopf algebra structure of $H^*(G/PL)$ is determined by the coproduct $\Delta(k_4) = k_4 \otimes 1 + k_2 \otimes k_2 + 1 \otimes k_4$.

Let M^m be a closed manifold, $m \equiv 0 \pmod 2$, and let $\phi: M^m \to G/PL$ be a map. Then there is a Kervaire surgery obstruction $s_K(M^m, \phi) \in \mathbb{Z}_2$ and a formula for s_K which uniquely characterizes the class $K_{4n-2} = \sum n \geq 1 \ k_{4n-2}$ [6], [7] 2.2

\[s_K(M^m, \phi) = \langle V^2(M) \cdot \phi^*(K_{4n-2}), [M] \rangle \in \mathbb{Z}_2 \]

where $V^2(M)$ is the square of the total Wu class $V(M) = \sum_{i \geq 0} V_i(M) \in H^*(M)$.

Let M^m be a \mathbb{Z}_2-manifold (that is, $w_1(M)$ is the reduction of an integral class $w_1(M) \in H^1(M, Z)$), $m \equiv 0 \pmod 4$, and let $\phi: M^m \to G/PL$ be a map. Then there is an index surgery obstruction $s_I(M^m, \phi) \in \mathbb{Z}_2$ and a formula for s_I which uniquely characterizes the class $K_{4*} = \sum n \geq 1 k_{4n}$.

\[s_I(M^m, \phi) = \langle V^2(M) \cdot \phi^*(K_{4*}) \]

\[+ Sq^1((\sum V_{2i}(M)Sq^1V_{2i}(M))\phi^*(K_{4* - 2})), [M] \rangle \in \mathbb{Z}_2 \]

3. The homology of SG. A sequence $I = (i_1, \ldots, i_n)$ of positive integers is allowable if $2i_{j+1} \geq i_j$, all j. We write $kI = (ki_1, \ldots, ki_n)$, $d(I) = \sum_{j=1}^n i_j$, and $e(I) = i_1 - (\sum_{j=2}^n i_j)$. Let $S(n)$ denote the set of allowable sequences I of length n with $e(I) \geq 0$.

If A is a graded Hopf algebra over \mathbb{Z}_2, let A^* denote the dual Hopf algebra, and let $\Lambda(A) \subset A$ denote the Hopf subalgebra generated by squares.

If X is a graded set, introduce Hopf algebras $P(X)$, the polynomial algebra on primitive generators X, $\Gamma(X) = P(X)^*$, the divided power algebra on X, and $E(X)$, the exterior algebra on primitive generators X. Then $E(X) \simeq E(X)^*$. The graded set $s(X)$ will be the set X with elements shifted up one dimension.

The space SG is studied in [4] and [5] by identifying it with the degree one component of $QS^0 = \lim_{n \to \infty} (\Omega^n S^n)$. If $x, y \in H_\bullet(SG)$, de-
note by \(x \cdot y \in H_*(SG) \) their composition product, and denote by \(x \ast y \in H_*(SG) \) the loop product \(x \ast y \ast [-1] \), computed in \(H_*(QS^0) \). Here \([q]\) denotes the homology class of a point in the degree \(q \) component of \(QS^0 \). Let \(Q^f = Q^i \circ \cdots \circ Q^s \) be the Dyer-Lashof operation. If \(I \in S(n) \), let \(e_I = Q^f[1] * [1 - 2^n] \in H_{4dI}(SG) \). The notation is that of [4]. The following two paragraphs and Lemma 3.1 are reformulations of theorems of [5].

There is an isomorphism of Hopf algebras
\[
H_*(SG) \cong H_*(SO) \otimes A \otimes (\otimes_{n \geq 1} C_n) \text{ where } A = \mathbb{Z}_2[e_{i, i} | i \geq 1] \text{ and } C_n = \mathbb{Z}_2[e_I | I \in S(n), e(I) \geq 1] \text{ are Hopf subalgebras of } H_*(SG).
\]

As an algebra, \(H_*(SO) \cong E(e_{i, i} | i \geq 1) \). The coproduct is \(\Delta(e_n) = \sum_{i+j=n} e_i \otimes e_j \). Further, \(e_i = e_*([RP(i)]) \), where \(:RP(\infty) \to SO \) is a certain map.

There is an isomorphism of Hopf algebras \(H_*(BG) = H_*(BO) \otimes BA \otimes BC_2 \otimes (\otimes_{n \geq 1} \overline{BC_n}) \), where \(BA = E(s(e_{i, i}) | i \geq 1) \), \(BC_n = P(s(e_I | I \in S(n), e(I) \geq 1)) \), and \(\overline{BC_n} = P(s(e_I | I \in S(n), e(I) \geq 2)) \).

Lemma 3.1. If \(x \in H_*(SG) \), then \(x = \lambda(x)e_n + \sum y'_i \cdot y'_i + \sum z'_i \ast z'_i \), where \(\lambda(x) = 0 \) or 1 and \(y'_i, y'_i, z'_i, z'_i \in H_*(SG) \) are elements of positive dimensions. In particular, the classes \(e_i \) generate \(H_*(SG) \) if both products \(\ast \) and \(\ast \) are used.

Next, we need a geometric interpretation of the loop product in \(H_*(SG) \). Let \(x, y \in H_*(SG) \) be represented by manifolds \(\alpha : M^a \to SG \) and \(\beta : N^b \to SG \). Then \(\alpha \ast [-1] : M^a \to QS^0 \) corresponds to a map \(M^a \times S^a \to S^a \) of degree zero on \(p \times S^4 \), \(p \in M \). By transverse regularity, this, in turn, corresponds to a degree zero map \(f : M' \to M \) covered by a bundle map \(\tilde{f} : \nu_M \to \nu_M \). Similarly, let \(\beta : N^b \to SG \) correspond to a degree zero map \(g : N' \to N \), covered by a bundle map \(\tilde{g} : \nu_N \to \nu_N \).

Lemma 3.2. The element \(x \ast y \in H_*(SG) \) is represented by a map
\(\alpha \ast \beta : M \times N \to SG \), which corresponds to the degree one normal map
\[
M \times N + M' \times N + M \times N' \xrightarrow{1 + (f \times 1) + (1 \times g)} M \times N,
\]
covered by the bundle map
\(\hat{1} + (\hat{f} \times \hat{1}) + (\hat{1} \times \hat{g}) \),

where \(+ \) indicates disjoint union of manifolds.

4. The map \(H^*(G/PL) \to H^*(SG) \).

Theorem 4.1. Let \(\alpha : M^a \to SG \) and \(\beta : N^b \to SG \) be maps, \(a + b = 2n \). Then
\[s_K(M \times N, \alpha - \beta) = s_K(M \times N, \alpha \cdot \beta) \]
\[= \langle (V(M \times N) \cdot \alpha^* \sigma(V) \otimes 1)_n, (V(M \times N) \cdot 1 \otimes \beta^* \sigma(V))_n, [M \times N] \rangle \]
\[= \left\langle V^2(M \times N), \sum_{r \neq 2} \sum_{i+j=2, i \neq j \neq 2} \alpha^* \sigma(w_i) \otimes \beta^* \sigma(w_j) \right\rangle, [M \times N] \]
\[\in \mathbb{Z}_2 \]

where \(\sigma(w_i) \in H^{i-1}(SG) \) is the suspension of \(w_i \in H^i(BS_G) \).

Theorem 4.2. Let \(\alpha: M^a \to SG \) and \(\beta: N^b \to SG \) be maps, \(a+b=4n \), where \(M^a \) and \(N^b \) are \(\mathbb{Z}_2 \)-manifolds. Then
\[
\begin{align*}
 &s_i(M \times N, \alpha - \beta) = s_i(M \times N, \alpha \cdot \beta) \\
 = &\langle Sq^1((V(M \times N) \cdot \alpha^* \sigma(V) \otimes 1)_{2n-1}), [M \times N] \rangle \\
 = &\left\langle V^2(M \times N) \left(\sum_{i \geq 1} \sigma(w_i)^{2i} \otimes \sigma(w_i)^{2i} \right) \\
 &+ Sq^1 \left(\left(\sum_{i \geq 0} V_{2i}(M) Sq^1 V_{2i}(M) \right) \left(\sum_{r \neq 2} \sum_{i+j=2, i \neq j \neq 2} \alpha^* \sigma(w_i) \otimes \beta^* \sigma(w_j) \right) \right), [M \times N] \right\rangle \\
 \in &\mathbb{Z}_2.
\end{align*}
\]

Theorem 4.1 is proved using Lemma 3.2, and the result of E. H. Brown, Jr., that the Kervaire surgery obstruction of a degree one normal map may be expressed as a difference of two Arf invariants [2]. To compute this difference in the situation of Lemma 3.2, an additional formula of Brown is needed, which expresses how the Arf invariant of a manifold \(M^{2n} \) depends on the choice of a degree one map \(S^{2n} \to T(p_M^*) \). The second equality in Theorem 4.1 is a lengthy computation with Stiefel-Whitney numbers. It is first verified for the products \(e_a \cdot e_b: RP(a) \times RP(b) \to SG \), and then the general case is deduced as a corollary.

The proof of Theorem 4.2 is similar to the proof of 4.1, once analogues of Brown’s results for the index surgery obstruction for \(\mathbb{Z}_2 \)-manifolds have been established.

As consequences of 2.2, 3.1, and 4.1, and 2.3, 3.1, and 4.2, we have

Theorem 4.3. Let \(k_{4n-2} \in H^{4n-2}(G/TOP) \) be as in §2. Then \(i^*(k_{4n-2}) = 0 \in H^*(SG) \) if and only if \(4n \neq 2^i \). If \(4n = 2^i \), then \(\langle i^*(k_{2^i-2}), e_T \rangle = 1 \) if and only if \(I \in S(2), d(I) = 2^i - 2 \).
Theorem 4.3 was first proved by Madsen, using the techniques of \cite{3}.

Theorem 4.4. Let \(k_{4n} \in H^{4n}(G/TOP) \) be as in \S 2. Then \(i^*(k_{4n}) = 0 \in H^*(SG) \) if \(4n \neq 2^j \). If \(4n = 2^j \), then \(i^*(k_{2^j}) = i^*(k_{2^{j-1}}) \). Hence \(i^*(k_{2^j} + k_{2^{j-1}}) = 0 \).

Remark 4.5. Note that by Remark 2.1 and Theorems 4.3 and 4.4, the map \(i^*: H^*(G/PL) \to H^*(SG) \) is also computed since \(\langle i^*(k_{2^j}), \bar{e}_{(1,1)} \rangle = 1 \).

Let \(K(P_*) = K_1 \times K_2 \) where \(K_1 = \prod_{n=2^j+2} K(P_n, n) \) and \(K_2 = \prod_{n=2^j+2} K(P_n, n) \).

Theorem 4.6. There is an exact sequence of Hopf algebras

\[
\mathbb{Z}_2 \to H_*(SO) \otimes \Lambda(A \otimes \mathbb{C}_2) \otimes \left(\bigotimes_{n \geq 3} C_n \right) \to H_*(SG) \\
\to H_*(G/TOP) \to \Gamma(W) \otimes H_*(K_2) \to \mathbb{Z}_2
\]

where \(W \) is a graded set such that there is an isomorphism of Hopf algebras \(H_*(K_1) \cong \Gamma(W) \otimes \Gamma(I \mid I \subseteq S(2), I \neq 2J) \).

5. The main theorems. In this section, we state the main results. The proofs consist of (careful) applications of the Eilenberg-Moore or Serre spectral sequence of the fibrations involved.

Theorem A. There is an isomorphism of Hopf algebras

\[
H_*(BTOP) \cong H_*(BO) \otimes BC_3 \otimes \left(\bigotimes_{n \geq 4} BC_n \right) \otimes E(s(2I \mid I \subseteq S(2))) \\
\otimes \Gamma(W) \otimes H_*(K_2).
\]

Further, \(H_*(BO) \otimes BC_3 \otimes \left(\bigotimes_{n \geq 4} BC_n \right) \cong \text{image } (H_*(BTOP) \to H_*(BG)) \), and \(\Gamma(W) \otimes H_*(K_2) \cong \text{image } (H_*(G/TOP) \to H_*(BTOP)) \).

Theorem B. There is an isomorphism of Hopf algebras

\[
H_*(STOP) \cong H_*(SO) \otimes \Lambda(A \otimes C_2) \otimes \left(\bigotimes_{n \geq 3} C_n \right) \otimes \Gamma(V) \otimes H_*(\Omega K_2)
\]

where \(V \) is a graded set such that, as algebras, \(\Gamma(V) = E(s^{-1}(W)) \).

The computation of \(H_*(BPL) \) is more complicated because of Remarks 2.1 and 4.5. First, we need more notation. Let

\[
V = \{ 2^i(2, 1, 1) \mid i \geq 0 \} \cup \{ 2^j(2^{i+1} + 1, 2^j + 1, 2^j) \mid i, j \geq 0 \} \\
\cup \{ 2^i(2^{j+k+1} + 2^j + 1, 2^{j+k} + 2^j, 2^{j+k}) \mid i, j, k \geq 0 \} \subseteq S(3).
\]
Let \(X = S(3) - Y \), and let \(X_0 = \{ I \in X \mid e(I) = 0 \} \). Let \(X_1 = X - X_0 \). Finally, let \(K'_2 = \prod_{n=1,2^l=2} K(P_n, n) \).

Theorem C. There is an isomorphism of Hopf algebras

\[
H_\ast(BPL) \cong H_\ast(BO) \otimes P(Z) \otimes \left(\bigotimes_{n \geq 4} BC_n \right) \otimes P(s(X_1)) \otimes \Gamma(W) \otimes H_\ast(K'_2) \otimes E(s(X_0)) \otimes E(s(2I \mid I \in Y)).
\]

where \(Z \) is a graded set such that \(P(Z) \otimes \Lambda(P(s(X_1))) \cong BC_4 \).

Theorem D. There is an isomorphism of Hopf algebras

\[
H_\ast(SPL) \cong H_\ast(SO) \otimes \left(\bigotimes_{n \geq 4} C_n \right) \otimes Z_2[ci \mid I \in X] \otimes \Lambda(Z_2[ci \mid I \in Y]) \otimes \Gamma(V) \otimes H_\ast(\Omega K'_2).
\]

Remark. It is easy to read off the dual Hopf algebras \(H^\ast(BTOP) \) and \(H^\ast(BPL) \) and the cobordism ring \(\Theta^\ast \cong \Theta^\ast \otimes (H^\ast(BPL) / H^\ast(BO)) \) from Theorems A and C.

References

Stanford University, Stanford, California 94305

University of Chicago, Chicago, Illinois 60637