EXTENSION OF POSITIVE HOLOMORPHIC LINE BUNDLES

BY BERNARD SHIFFMAN

Communicated by Gian-Carlo Rota, May 7, 1971

In this note, we announce a result on extending complex line bundles through subvarieties of codimension 2. The motivation for this result is that it allows us to extend a recent result of Phillip Griffiths [2] on meromorphically extending holomorphic maps into compact Kahler manifolds. Details and further related results will appear elsewhere.

A holomorphic line bundle L on a complex manifold M is said to be semipositive if there exists a hermitian metric h on L such that the curvature form

$$\Omega = \frac{i}{2\pi} \partial \bar{\partial} \log h$$

is positive semidefinite at all points of M (i.e., the locally defined functions $\log h$ are plurisubharmonic).

Theorem. Let M be a complex manifold, and let S be an analytic set in M such that $\text{codim } S = 2$. Then every semipositive holomorphic line bundle L on $M - S$ extends to a holomorphic line bundle on M.

If $\text{codim } S \geq 3$, then it is a well-known fact that any line bundle L on $M - S$ extends to M (see [3]).

In order to prove the theorem, one must show that L induces the zero element of $H^2(S, O^*) = \Gamma(M, \mathcal{O}_M^\otimes \mathcal{O}^*)$. Therefore it suffices to show that L extends locally, and the theorem is then a consequence of the following lemma applied to the curvature form Ω.

We let D denote the open unit disk in \mathbb{C}.

Lemma. Let

$$\omega = i \sum f_{\alpha\beta} dz_{\alpha} \wedge d\bar{z}_{\beta}, \quad (1 \leq \alpha, \beta \leq n)$$

Key words and phrases. Holomorphic line bundle, curvature form, positive line bundle, sheaf cohomology, local cohomology, harmonic function, plurisubharmonic function, analytic subvariety, Kahler manifold, meromorphic map.

1 This research was partially supported by National Science Foundation Grant GP-21193.
be a real closed \((1, 1)\)-form on the domain

\[W = (D^2 - 0) \times D^{n-2} \subset \mathbb{C}^n. \]

If \(f_{11} \geq 0 \) and \(f_{22} \geq 0 \) on \(W \), then there exists a real-valued function \(u \) on \(W \) such that \(\omega = dd^c u \). In particular, if \(\omega \) is a Kahler form on \(W \), then \(\omega = dd^c u \), where \(u \) is a function on \(W \).

Write \(W = W_1 \cup W_2 \), where

\[W_j = \{ z \in W : z_j \neq 0 \}, \quad \text{for } j = 1, 2. \]

Then \(\omega \mid W_j = dd^c u_j \), where \(u_j \) is a real-valued function on \(W_j (j = 1, 2) \). Let \(h = u_1 - u_2 \) on \(W_1 \cap W_2 \). Then \(dd^c h = 0 \), i.e., \(h \) is pluriharmonic. For the case \(n = 2 \), \(u_1 \) and \(u_2 \) are subharmonic in each variable separately. The main point of the lemma (and the theorem) is that we can then write \(h = h_1 - h_2 \), where \(h_j \) is a pluriharmonic function on \(W_j (j = 1, 2) \), and therefore \(u = u_j - h_j \) is a globally defined function on \(W \) with \(\omega = dd^c u \). The proof uses the solution of the Dirichlet problem on the annulus \(A_r = \{ r < |z| < 1 \} \). By considering the biannulus \(A_r \times A_r \) and letting \((r, s) \to (0, 0) \), one constructs functions \(\bar{u}_j \) on \(W_j (j = 1, 2) \) such that \(\bar{u}_1 \) and \(\bar{u}_2 \) are harmonic in each variable separately, and \(h = \bar{u}_1 - \bar{u}_2 \). The existence of \(h_1 \) and \(h_2 \) then follows from the equation \(h = \bar{u}_1 - \bar{u}_2 \).

In [2], Phillip Griffiths proved the following result.

Theorem (Griffiths). Let \(f : D^n - 0 \to X \) be a holomorphic map, where \(X \) is a compact Kahler manifold. If \(n \geq 3 \), then \(f \) extends meromorphically to \(D^n \) (i.e., the closure of the graph of \(f \) is an analytic set in \(D^n \times X \)).

Griffiths' idea is to apply a theorem of Errett Bishop [1], [4] on extending analytic sets with finite volume. Consider the Kahler form

\[\omega = \frac{i}{2} \sum d\bar{z}_a \wedge dz_a + f^* \omega_X \]

on \(D^n - 0 \), where \(\omega_X \) is the given Kahler form on \(X \). The volume of the graph of \(f \) is then given by \(\int \omega^n \). Since \(H^2(D^n - 0, \mathbb{R}) = 0 \) and \(H^1(D^n - 0, \mathbb{C}) = 0 \), for \(n \geq 3 \), one can write \(\omega = dd^c u \), where \(u \) is a plurisubharmonic function on \(D^n - 0 \). By approximating \(u \) by smooth plurisubharmonic functions on a ball \(B \subset D^n \) about 0 and by applying Stokes' theorem, Griffiths concludes that \(\int_B (dd^c u)^n < +\infty \).

By the above lemma, we can also write \(\omega = dd^c u \) for the case \(n = 2 \) (although \(H^1(D^2 - 0, \mathbb{C}) \neq 0 \)). Therefore, Griffiths' theorem is also valid for \(n = 2 \).
REFERENCES

YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520