Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

On the class numbers of totally imaginary quadratic extensions of totally real fields


Author: Judith E. Sunley
Journal: Bull. Amer. Math. Soc. 78 (1972), 74-76
MSC (1970): Primary 1065; Secondary 1068
DOI: https://doi.org/10.1090/S0002-9904-1972-12859-3
MathSciNet review: 0291127
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Baker, Imaginary quadratic fields of class number 2, Ann. of Math. (to appear). MR 241383
  • 2. L. Goldstein, A generalization of Stark's theorem, J. Number Theory (to appear). MR 289456
  • 3. L. Goldstein, Imaginary quadratic fields of class number 2, J. Number Theory (to appear). MR 299587
  • 4. H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class number one, Quart. J. Math. Oxford Ser. 2 no. 5 (1934), 293-301.
  • 5. E. Landau, Verallgemeinerung eines Polyaschen Satzes auf algebraische Zahlkörper, Göttinger Nachr. 1918, 478-488.
  • 6. G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Göttinger Nachr. 1918, 21-29.
  • 7. S. Schanuel, Heights in number fields, Unpublished Thesis, Columbia University, New York.
  • 8. H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1-27. MR 36 #5102. MR 222050
  • 9. H. M. Stark, Imaginary quadratic fields of class number 2, Ann. of Math. (to appear). MR 316421
  • 10. J. Sunley, On the class numbers of totally imaginary quadratic extensions of totally real fields, University of Maryland, College Park, Md., 1971. MR 291127
  • 11. T. Tatuzawa, On a theorem of Siegel, Japan J. Math. 21 (1951), 163-178. MR 14, 452. MR 51262

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 1065, 1068

Retrieve articles in all journals with MSC (1970): 1065, 1068


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1972-12859-3

American Mathematical Society