INVARIANT SPLITTINGS IN NONASSOCIATIVE ALGEBRAS: A HOPF APPROACH

BY H. P. ALLEN
Communicated by M. Gerstenhaber, August 10, 1971

The purpose of this short note is to announce generalizations of known invariant splitting theorems due to Taft [4], [5], [6], [7] and Mostow [1], which have been obtained by Hopf methods. The approach is an outgrowth of techniques developed by M. Sweedler in order to study algebraic groups from a Hopf point of view, and was motivated by several conversations with him.

0. Let \((V, \Delta, \varepsilon)\) be a coalgebra over the field \(k\) which is equipped with the structure of a unitary associative algebra by means of coalgebra morphisms \(m: V \otimes_k V \to V\) and \(\mu: k \to V. A = (V, \Delta, \varepsilon, m, \mu)\) is then a bialgebra and is a Hopf algebra if \(\text{id} \in \text{End}_k(V)\) is invertible in the convolution structure [2, p. 71]. We will often confuse \(A\) with \(V\).

Recall that \(A^*\) has a natural associative algebra structure relative to \(A^* \otimes_k A^* \to (A \otimes_k A)^* \Delta_* A^*, \quad k \cong k^* \otimes A^*\).

An element \(\lambda \in A^*\) is called a (left) integral for \(A\) if \(a^* \lambda = \langle a^*, 1_A \rangle \lambda\) for all \(a^* \in A^*\). If \(M \otimes_k A\) is a right \(A\)-comodule, then \(M\) carries a (rational) left \(A^*\)-module structure via

\[
A^* \otimes_k M \to A^* \otimes_k M \otimes_k A \to M \otimes_k A^* \otimes_k A \to M \otimes_k k \cong M
\]

[2, pp. 33–36, 91–92] and one has the adjoint \(A^*\)-module structure on \(E = \text{End}_k M\) given in [3, p. 332] which is characterized by the relation

\[
(a^* - T)(m) = \sum_{(m)} (a^* - m_{(1)}) \cdot T(m_{(0)}) \quad \text{for } a^* \in A^*, \; T \in E \; \text{and } m \in M.
\]

If \(A\) has an integral \(\lambda\) which satisfies \(\langle \lambda, 1_A \rangle = 1\), then every rational \(A^*\)-module is completely reducible. Conversely, if \(\lambda A\) is a completely reducible rational \(A^*\)-module (via the regular right \(A\)-comodule structure of \(A\)) then \(A\) has an integral satisfying the above condition.

1. Let \(\mathfrak{N}\) be a nonassociative algebra over \(k\), \(\mathfrak{R}\) an ideal in \(\mathfrak{N}\) with \(\mathfrak{N}\mathfrak{R} = \{0\}, \mathfrak{E}\) a subalgebra of \(\mathfrak{N}\) with \(\mathfrak{N} = \mathfrak{E} \oplus \mathfrak{R}\) (as vector spaces). We have

Key words and phrases. Hopf algebra, invariant radical splitting.

1 This research was partially supported by NSF grants GP 11404 and RF 3224-A1.
THEOREM. Let A be a commutative Hopf algebra and $\psi : \mathcal{R} \to \mathcal{R} \otimes_k A$ a comodule structure map which is multiplicative. Assume further that A^*A is completely reducible and that \mathcal{R} is a subcomodule. Then there is a subalgebra of \mathcal{R} which is a subcomodule and a vector space complement to \mathcal{R}.

2. Throughout this section \mathcal{R} is a nonassociative algebra and a right comodule for a commutative Hopf algebra A where the comodule structure map ψ is multiplicative and A^*A is completely reducible. Using the preceding result one easily obtains the following:

THEOREM EA. If \mathcal{R} is a finite-dimensional associative algebra which is separable modulo its radical \mathcal{R}, and \mathcal{R} is an A-subcomodule, then there is a subalgebra of \mathcal{R} which is a subcomodule and vector space complement to \mathcal{R}.

THEOREM EL. If \mathcal{R} is a finite-dimensional Lie algebra over a field of characteristic 0, and $\mathcal{R} = \text{radical } \mathcal{R}$ is a subcomodule, then there is a subalgebra of \mathcal{R} which is a subcomodule and vector space complement to \mathcal{R}.

One has similar results for the case of alternative or Jordan algebras.

3. In the notation of §2 we let \mathcal{S} be a subalgebra subcomodule complement to \mathcal{R} and \mathcal{S}_1 any separable subalgebra subcomodule of \mathcal{R}. For $\mathcal{B} \subseteq \mathcal{R}$ we let $B^* = \{v \in \mathcal{B} | a^* \cdot v = \langle a^*, 1 \rangle v, \text{ for all } a^* \in A^*\}$. We have

THEOREM UA. Under the hypothesis of EA there is an $x \in \mathcal{R}^*$ such that conjugation by $1 + x$ induces a comodule morphism carrying \mathcal{S}_1 into \mathcal{S}.

THEOREM UL. Under the hypothesis of EL, there is an $x \in (\text{Nil } \mathcal{R})^*$ (Nil \mathcal{R}, the nilradical of \mathcal{R}) such that $\exp(adx)$ induces a comodule morphism carrying \mathcal{S}_1 into \mathcal{S}.

One has results similar to those in [7] for the case of alternative or Jordan algebras.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210